

LABORATORY GUIDE

Linear Double Inverted Pendulum Experiment for MATLAB®/Simulink® Users

Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Peter Martin, M.A.SC., Quanser

CAPTIVATE. MOTIVATE. GRADUATE.

© 2012 Quanser Inc., All rights reserved.

Quanser Inc. 119 Spy Court Markham, Ontario L3R 5H6 Canada info@quanser.com Phone: 1-905-940-3575 Fax: 1-905-940-3576

Printed in Markham, Ontario.

For more information on the solutions Quanser Inc. offers, please visit the web site at: http://www.quanser.com

This document and the software described in it are provided subject to a license agreement. Neither the software nor this document may be used or copied except as specified under the terms of that license agreement. All rights are reserved and no part may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Quanser Inc.

CONTENTS

1	Introduction Background		4
2			5
	2.1	Modeling	5
	2.2	Control	7
3	Lab Experiments		10
	3.1	Simulation	10
	3.2	Implementation	12
4	System Requirements		15
	4.1	Overview of Files	16
	4.2	Setup for Simulation	16
	4.3	Setup for Running on DBPEN-LIN	17

1 INTRODUCTION

This laboratory manual describes how to design a state-feedback control system to balance a double-pendulum, while tracking a desired IP02 linear servo cart position.

The plant has two main components: the Quanser IP02 linear motion plant and the Quanser Linear Double Pendulum module. The double pendulum is a short pendulum with an additional encoder that is mounted between the IP02 linear cart, and a medium length pendulum. The medium pendulum is described in the SPG and SIP User Manual [4].

Topics Covered

- Obtain a state-space representation of the open-loop system.
- Design and tune an LQR-based state-feedback controller satisfying the closed-loop system's desired design specifications.
- Simulate the system and ensure it is stabilized using the designed state-feedback control.
- Implement the state-feedback controller on the Linear Double Pendulum (DBPEN-LIN) system and evaluate its actual performance.

Prerequisites

In order to successfully carry out this laboratory, the user should be familiar with the following:

- 1. See the system requirements in Section 4 for the required hardware and software.
- 2. Modeling and state-space representation.
- 3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.
- 4. Basics of Simulink®.
- 5. QUARC Integration lab detailed in Appendix A in the IP02 Laboratory Workbook [7].

2 BACKGROUND

2.1 Modeling

2.1.1 Model Convention

The double pendulum model is shown in Figure 2.1. The DBPEN-LIN is attached to the IP02 Linear Servo Base Unit pendulum pivot. The positive sense of rotation is defined to be counter-clockwise (CCW), when facing the linear cart pinions. The positive direction of linear displacement of the IP02 cart is to the right when facing the cart. Finally, the zero angle of the pendulums, θ = 0 and α = 0, corresponds to the two pendulums perfectly balanced vertically.

The IP02 cart position is denoted by the variable x_c , has a mass of m_c , and is actuated by an applied force F_c . The pendulums have masses m_{p1} and m_{p2} located at their respective centres of mass, (x_{p1}, y_{p1}) and (x_{p2}, y_{p2}) . The angle of the first pendulum, α , is defined relative to the upright position while the angle of the second pendulum is defined relative to the first pendulum. The length of the distance between the first pivot and the first pendulum centre of mass is defined as l_{p1} , while the length between the second pivot and the second pendulum centre of mass is l_{p2} .

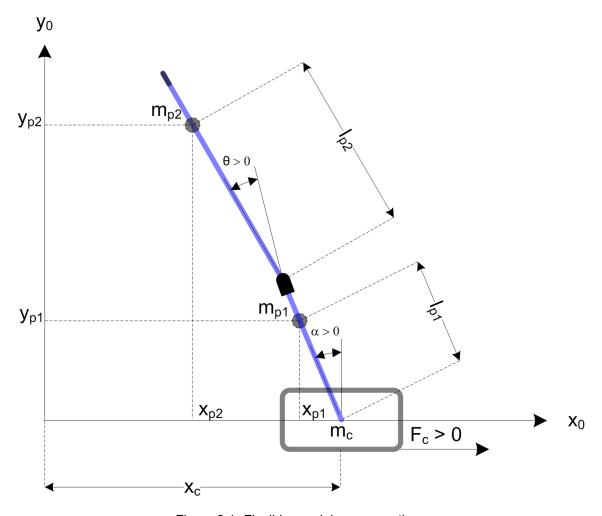


Figure 2.1: Flexible pendulum conventions

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system. This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the IP02 cart and pendulums with respect to the servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

$$\frac{\partial^2 L}{\partial t \partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i$$

The variables q_i are called *generalized coordinates*. For this system let

$$q(t)^{\top} = \begin{bmatrix} x_c(t) & \alpha(t) & \theta(t) \end{bmatrix}$$

where, as shown in Figure 2.1 $\alpha(t)$ is the first pendulum angle, θ is the second pendulum angle, and $x_c(t)$ is the linear cart position. The corresponding velocities are

$$\dot{q}(t)^{\top} = \begin{bmatrix} \frac{\partial x_c(t)}{\partial t} & \frac{\partial \alpha(t)}{\partial t} & \frac{\partial \theta(t)}{\partial t} \end{bmatrix}$$

Note: The dot convention for the time derivative will be used throughout this document, e.g., $\dot{\alpha} = \frac{d\alpha}{dt}$. The time variable t will also be dropped from α , θ , and x_c , e.g., $\alpha = \alpha(t)$.

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

$$\begin{split} \frac{\partial^2 L}{\partial t \partial \dot{x}_c} - \frac{\partial L}{\partial x_c} &= Q_1 \\ \frac{\partial^2 L}{\partial t \partial \dot{\alpha}} - \frac{\partial L}{\partial \alpha} &= Q_2 \\ \frac{\partial^2 L}{\partial t \partial \dot{\theta}} - \frac{\partial L}{\partial \theta} &= Q_2 \end{split}$$

The Lagrangian of the system is described

$$L = T - V$$

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian is the difference between a system's kinetic and potential energies.

The generalized forces Q_i are used to describe the non-conservative forces (e.g., friction) applied to a system with respect to the generalized coordinates. In this case the Coulomb friction is neglected, as well as the force due to the pendulum acting on the linear cart. The generalized forces acting on the system are thus:

$$Q_1 = F_c - B_{eq} \dot{x_c},\tag{2.1}$$

$$Q_2 = -B_{p1}\dot{\alpha},\tag{2.2}$$

and

$$Q_3 = -B_{p2}\dot{\theta}. \tag{2.3}$$

Our control variable is the input servo motor voltage, V_m .

The force applied to the linear cart, F_c , is generated by the servo motor as described by the equation

$$F_c = \frac{\eta_g K_g K_t}{R_m r_{mp}} \left(-\frac{K_g K_m \dot{x_c}}{r_{mp}} + \eta_m V_m \right)$$
 (2.4)

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system. Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various

derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the system can be obtained. See the supplied Maple worksheet (or its equivalent HTML representation) for the complete derivation.

Based on the system schematic shown in Figure 2.1 and the generalized forces Equation 2.1, Equation 2.2 and Equation 2.2, the first Lagrange equation can be expressed as shown in the the *DBPEN-LIN.mws* MapleTM worksheet, or the HTML equivalent. The MapleTM worksheet also details the non-linear equations of motion that result from solving the two Lagrange equations for the second-order time derivative of the Lagrangian coordinates.

See [2] for a description of the corresponding IP02 parameters (e.g. such as the back-emf constant, K_m).

2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

$$z^{\top} = [z_1 \ z_2]$$

and f(z) is to be linearized about the operating point

$$z_0^{\top} = [a \ b]$$

The linearized function is

$$f_{lin} = f(z_0) + \left(\frac{\partial f(z)}{\partial z_1}\right) \bigg|_{z=z_0} (z_1 - a) + \left(\frac{\partial f(z)}{\partial z_2}\right) \bigg|_{z=z_0} (z_2 - b)$$

2.1.4 Linear State-Space Model

The linear state-space equations are

$$\dot{x} = Ax + Bu \tag{2.5}$$

and

$$y = Cx + Du (2.6)$$

where x is the state, u is the control input, A, B, C, and D are state-space matrices. For the linear double pendulum system, the state and output are defined

$$x^{\top} = \begin{bmatrix} x_c & \alpha & \gamma & \dot{x_c} & \dot{\alpha} & \dot{\gamma} \end{bmatrix}$$

where $x_{c,d}$ is the desired cart position, and

$$y^{\top} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}.$$

After linearizing the nonlinear equations of motion about the zero angle (balanced) position, and substituting the state given in Equation 2.1.4, we obtain the state-space matrices presented in the *DBPEN-LIN.mws* MapleTM worksheet, or the HTML equivalent.

Note: The velocities of the servo and pendulum angles can be computed in the digital controller, e.g., by taking the derivative and filtering the result though a high-pass filter.

2.2 Control

In Section 2.1, we found a linear state-state space model that represents the Linear Double Pendulum system. This model is used to investigate the stability properties of the system in Section 2.2.1. In Section 2.2.2, the notion of controllability is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the control gain and is discussed in Section 2.2.3. Lastly, Section 2.2.4 describes the state-feedback control used to control the servo position while minimizing link deflection.

2.2.1 Stability

The stability of a system can be determined from its poles ([8]):

- Stable systems have poles only in the left-hand plane.
- Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on the imaginary axis.
- Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of the system can be found using

$$\det\left(sI - A\right) = 0\tag{2.7}$$

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues of the state-space matrix A.

2.2.2 Controllability

If the control input, u, of a system can take each state variable, x_i where $i = 1 \dots n$, from an initial state to a final state then the system is controllable, otherwise it is uncontrollable ([8]).

Rank Test The system is controllable if the rank of its controllability matrix

$$T = \begin{bmatrix} B & AB & A^2B \dots A^nB \end{bmatrix}$$
 (2.8)

equals the number of states in the system,

$$rank(T) = n. ag{2.9}$$

2.2.3 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback control gain. Given the plant model in Equation 2.5, find a control input u that minimizes the cost function

$$J = \int_0^\infty x(t)' Q x(t) + u(t)' R u(t) dt,$$
 (2.10)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are, essentially, tuning variables.

Given the control law u = -Kx, the state-space in Equation 2.5 becomes

$$\dot{x} = Ax + B(-Kx)
= (A - BK)x$$

2.2.4 Feedback Control

The feedback control loop that in Figure 2.2 is designed to control the position of the IP02 linear cart while balancing the rigid and flexible pendulums.

The reference state is defined

$$x_d = \begin{bmatrix} x_{c,d} & 0 & 0 & 0 & 0 \end{bmatrix}$$

The controller is therefore

$$u = K(x_d - x). (2.11)$$

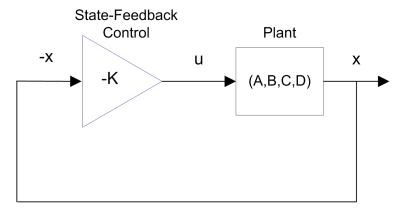


Figure 2.2: State-feedback control loop

Note that when $x_d = 0$, then u = -Kx, which is the controller used in the LQR algorithm.

To eliminate linear cart regulation error, we can augment the system to include an integrator such that

$$\dot{\eta} = \begin{bmatrix} A & 0 \\ 1 & 0 \end{bmatrix} \eta + \begin{bmatrix} B \\ 0 \end{bmatrix} u$$

where A and B are the state-space matrices defined in Section 2.1.4 and the states are

$$\eta^{\top} = \begin{bmatrix} x_c - x_{c,d} & \alpha & \theta & \dot{x_c} & \dot{\alpha} & \dot{\theta} \end{bmatrix} \int (x_c - x_{c,d}) \, dt \end{bmatrix}$$

This introduces the integration terms $\eta_7(t)=\int (x_c-x_{c,d})\,\mathrm{d}t$ to the feedback controller

$$u = -K(\eta),$$

to help compensate for unmodeled dynamics in the actual system that cause the cart to drift from its desired postiion.

3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the Simulink diagram shown in Figure 3.1 to simulate the closed-loop control of the Linear Double Pendulum system. The system is simulated using the linear model summarized in Section 2.1. The Simulink model uses the state-feedback control described in Section 2.2.4. The feedback gain K is found using the Matlab LQR command (LQR is described briefly in Section 2.2.3). The goal is to make sure the gain used successfully stabilizes the system (i.e., keeps it balanced), and does not saturate the dc motor.

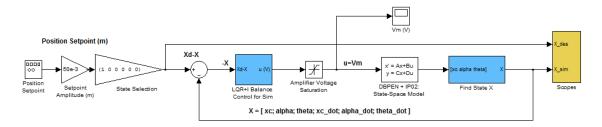


Figure 3.1: Simulink model used to simulate Linear Double Pendulum.

The state-feedback controller has proportional-derivative (PD) action and the integral (I) action. The *DBPEN + IP02* block shown in Figure 3.1 creates the primary state vector using a differentiating filter, with an additional integral block in the open loop. The position and velocity states of the model are multiplied by the vector gain k computed in earlier in, i.e., k(1:6) = [k1, k2, k3, k4, k5, k6], and added to the integral component. The *Signal Generator* introduces a ± 50 millimeter setpoint in order to evaluate the step-response performance of the control system.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the lab files first.

3.1.1 Procedure

Follow these steps to simulate the system:

1. Make sure the LQR weighting matrices in setup_ip02_dbpen.m are set to

and

$$R = 0.01.$$

2. Run the script to generate the gain

$$K = \begin{bmatrix} 42.33 & -180.91 & 1 - 417.77 & 31.06 & -48.50 & -43.23 & 10 \end{bmatrix}.$$

LQR Tuning: When tuning the LQR, we start with the identity matrix. To put more emphasis on the response of the linear cart, we set the cart position gain Q(1,1) = 10, and to ensure that the pendulums remain balanced we set Q(2,2) = 50 and Q(3,3) = 50. The pendulum damping terms are set to 0.1 to add some slight damping to the response of the pendulum angles, while maintaining a fast response. The last diagonal element, Q(7,7) is set to 1 to generate an integral gain for the linear cart to keep it tracking the desired position on the track.

- 3. Ensure the Signal Generator is set to the following:
 - Amplitude = 1
 - Frequency = 0.2

and that the Setpoint Amplitude (m) gain is set to 0.005 to generate a step of 10 cm between or \pm 50 mm.

- 4. Open the cart position scope, *Cart Position (mm)*, the small pendulum angle scope, *alpha (deg)*, the medium pendulum angle scope, *theta (deg)*, and the motor input voltage scope, *Vm (V)*.
- 5. Start the simulation. The scopes should be displaying responses similar to Figure 3.2.

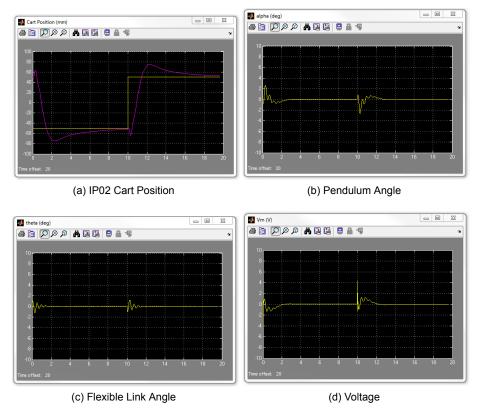


Figure 3.2: Simulated closed-loop response.

3.1.2 Analysis

The feedback response is shown in Figure 3.3. You can generate this figure by running the plot command.

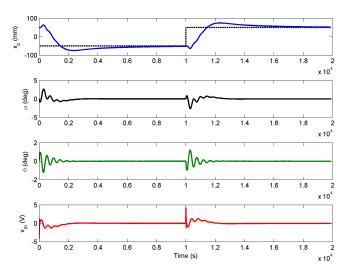


Figure 3.3: Simulated Linear Double Pendulum feedback response.

As shown by the response in Figure 3.3, the double-pendulum remainins balanced while tracking the desired cart position.

Generating the Matlab figure: After each simulation run, each scope automatically saves their response to a variable in the Matlab® workspace. The Cart Position (mm) scope saves its response to the variable called data_xc, the Alpha (deg) scope saves its data to the data_alpha variable, the Theta (deg) scope saves its data to the data_theta variable, and the Vm (V) scope saves its plot to the data_vm variable.

3.2 Implementation

The q_dbpen_lin Simulink diagram shown in Figure 3.4 is used to perform the balance control on the DBPEN-LIN. The IP02 + DBPEN subsystem contains QUARC® blocks that interface with the DC motor and sensors of the DBPEN-LIN system.

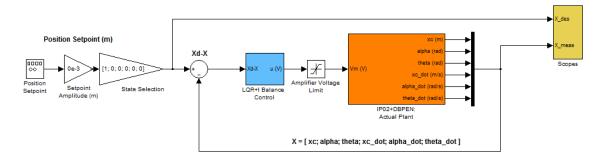


Figure 3.4: Simulink model used with QUARC® to run controller on the DBPEN-LIN.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the lab files first.

3.2.1 Procedure

Follow this procedure:

- 1. Run the setup_ip02_dbpen.m script using the LQR weighting matrices that you used in the simulation in Section 3.1.
- 2. Open the linear cart position scope, *Cart Position (mm)*, the small pendulum angle scope, *alpha (deg)*, the medium pendulum angle scope, *theta (deg)*, and the motor input voltage scope, *V Command (V)*.
- 3. In the Simulink diagram, go to QUARC | Build.
- 4. Make sure that the cart is close to the centre of the track and the pendulums are completely still.
- 5. Click on QUARC | Start to run the controller.
- 6. Once the controller is running, slowly raise the pendulums counter-clockwise (CCW) to their upright vertical position. You should feel the motor voltage kick-in when the pendulums are perfectly straight, and the balance control engages. Holding the tip of the medium pendulum at 90 degrees is an effective way of ensuring that both pendulums are perfectly straight. The scopes should be displaying responses similar to Figure 3.5.

Note: Once the controller has engaged, do not attempt to manually lower the pendulums. If the pendulums or cart move outside of a safe workspace, the system watchdog should halt the controller automatically.

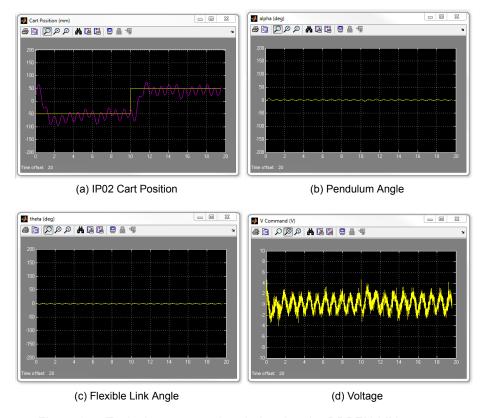


Figure 3.5: Typical response when balancing the DBPEN-LIN system

7. If your specifications have not been met, you can finely tune the LQR weighting matrices on-the-fly using the following command:

```
>> K = lqr(A,B, diag([Q(1,1),Q(1,1),Q(3,3),Q(4,4),Q(5,5),Q(6,6),Q(7,7)]),R)
```

8. To stop the experiment, click on the QUARC | Stop button but make sure you catch the pendulums before they swing down.

3.2.2 Analysis

An example of the closed-loop balance response is shown in Figure 3.6. You can generate this using the plot command after running the q_dbpen_lin QUARC controller.

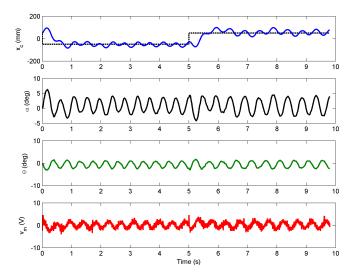


Figure 3.6: DBPEN-LIN balance control response

Due to the friction and other non-linearities in the system, the IP02 servo oscillates back-and-forth approximately ± 25 mm to balance the pendulum. The small pendulum angle does not exceed 6 degrees and the medium pendulum angle does not exceed 3 degrees when balanced. Because of the integrator, the IP02 cart eventually settles at the desired position.

4 SYSTEM REQUIREMENTS

Required Software

- Microsoft Visual Studio (MS VS)
- Matlab® with Simulink®, Real-Time Workshop, and the Control System Toolbox
- QUARC®

See the QUARC® software compatibility chart in [5] to see what versions of MS VS and Matlab are compatible with your version of QUARC and for what OS.

Required Hardware

- Data acquisition (DAQ) device with 2x encoder inputs and that is compatible with QUARC[®]. This includes
 Quanser DAQ boards such as Q8-USB, QPID, and QPIDe and some National Instruments DAQ devices. For
 a full listing of compliant DAQ cards, see Reference [1].
- Quanser IP02 linear servo.
- Quanser Linear Double Pendulum (positioned underneath the IP02).
- Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

- QUARC® is installed on your PC, as described in [3].
- DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the QUARC Analog Loopback Demo).
- Linear Double Pendulum and amplifier are connected to your DAQ board as described its User Manual [6].

4.1 Overview of Files

File Name	Description	
Linear Double Pendulum User Man- ual.pdf	This manual describes the hardware of the DBPEN-LIN system and explains how to setup and wire the system for the experiments.	
Linear Double Pendulum Laboratory Guide.pdf	This document demonstrates how to obtain the linear state-space model of the system, simulate the closed-loop system, and implement controllers on the DBPEN-LIN plant using QUARC®.	
setup_ip02_sbpen.m	The main Matlab script that sets the IP02 motor and sensor parameters, the IP02 configuration-dependent model parameters, and the DBPEN-LIN sensor parameters. Run this file only to setup the laboratory.	
config_ip02.m	Returns the configuration-based IP02 model specifications Rm, Kt, Km, Kg, eta_g, Beq, Jeq, Jm, r_mp, and eta_m, the sensor calibration constant K_EC, and the amplifier limits VMAX_AMP and IMAX_AMP.	
config_pen.m	Returns the specified pendulum model parameters.	
s_dbpen_lin.mdl	Simulink file that simulates the closed-loop control of a Linear Double Pendulum system using state-feedback control.	
q_dbpen_lin.mdl	Simulink file that implements the state-feedback control on the Linear Double Pendulum system using QUARC®.	
DBPEN-LIN.mws	Maple worksheet used to develop the model for the DBPEN-LIN experiment. Waterloo Maple 9, or a later release, is required to open, modify, and execute this file.	
DBPEN-LIN.html	HTML presentation of the Maple Worksheet. It allows users to view the content of the Maple file without having Maple 9 installed. No modifications to the equations can be performed when in this format.	

Table 4.1: Files supplied with the DBPEN-LIN

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the s_dbpen_lin Simulink diagram and the setup_ip02_dbpen.m script must be configured.

Follow these steps:

- 1. Load the Matlab software.
- 2. Browse through the Current Directory window in Matlab and find the folder that contains the file setup_ip02_dbpen.m.
- 3. Open the *setup_ip02_dbpen.m* script.
- 4. **Configure setup_ip02_dbpen script**: When used with the DBPEN-LIN, the IP02 has no additional weight. Make sure the script is setup to match this setup:
 - IP02_LOAD_TYPE to 'NO_LOAD'
 - K_AMP to 1 (unless your amplifier gain is different)
 - AMP_TYPE to your amplifier type (e.g., VoltPAQ).

- Ensure other parameters such as VMAX_DAC match your system configuration.
- 5. Run setup_ip02_dbpen.m to setup the Matlab workspace.
- 6. Open the s_dbpen_lin.mdl Simulink diagram, shown in Figure 3.1.

4.3 Setup for Running on DBPEN-LIN

Before performing the in-lab exercises in Section 3.2, the q_dbpen_lin Simulink diagram and the setup_ip02_dbpen.m script must be configured.

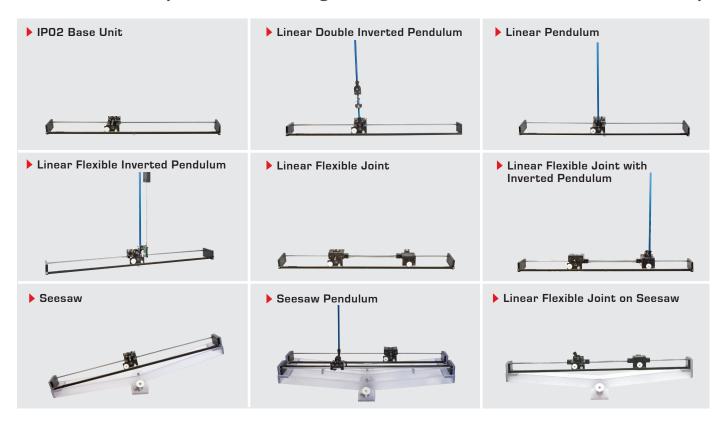
Follow these steps to get the system ready for this lab:

- 1. Setup the IP02 with the DBPEN-LIN module as detailed in the Linear Double Pendulum User Manual [6].
- 2. Make sure that the cart is close to the centre of the track and the pendulums are completely still. For more information, go to the DBPEN-LIN User Manual [6].
- 3. Configure and run setup_ip02_dbpen.m as explained in Section 4.2.
- 4. Open the *q_adpen_lin.mdl* Simulink diagram, shown in Figure 3.4.
- Configure DAQ: Ensure the HIL Initialize block in the DBPEN + IPO2 subsystem is configured for the DAQ device that is installed in your system. See Reference [1] for more information on configuring the HIL Initialize block.

REFERENCES

- [1] Quanser Inc. QUARC User Manual.
- [2] Quanser Inc. IP02 User Manual, 2009.
- [3] Quanser Inc. QUARC Installation Guide, 2009.
- [4] Quanser Inc. SIP and SPG User Manual, 2009.
- [5] Quanser Inc. QUARC Compatibility Table, 2010.
- [6] Quanser Inc. DBPEN-LIN User Manual, 2012.
- [7] Quanser Inc. IP02 Lab Workbook (QUARC), 2012.
- [8] Norman S. Nise. Control Systems Engineering. John Wiley & Sons, Inc., 2008.

Nine linear motion plants for teaching fundamental and advanced controls concepts



Quanser's linear collection allows you to create experiments of varying complexity – from basic to advanced. With nine plants to choose from, students can be exposed to a wide range of topics relating to mechanical and aerospace engineering. For more information please contact info@quanser.com

©2012 Quanser Inc. All rights reserved.

