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1 INTRODUCTION

This laboratory manual describes how to design a state-feedback control system that can balance an inverted pen-
dulum mounted on the linear flexible joint cart while minimizing the spring deflection.

The plant has two main components: the Quanser IP02 linear motion plant and the Quanser LFJC-PEN-E module.

Topics Covered

Obtain a state-space representation of the open-loop system.

Design and tune an LQR-based state-feedback controller satisfying the closed-loop system's desired design
specifications.

Simulate the system and ensure it is stabilized using the designed state-feedback control.

Implement the state-feedback controller on the LFJC-PEN system and evaluate its actual performance.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. See the system requirements in Section 4 for the required hardware and software.
Modeling and state-space representation.
State-feedback design using Linear-Quadratic Regular (LQR) optimization.

Basics of LabVIEW™ |

o b w DN

LabVIEW Integration lab detailed in Appendix A in the IP02 Lab Workbook [2].




2 BACKGROUND

2.1 Modeling

2.1.1 Model Convention

The single inverted pendulum and linear flexible joint cart model is shown in Figure 2.1. The LFJC-PEN module
is coupled to the IP02 Linear Servo Base Unit through a linear spring with equivalent stiffness K. The positive
sense of linear displacement is to the right when facing the cart. The positive sense of rotation of the pendulum is
defined to be counter-clockwise (CCW), when facing the cart pinions. Finally, the zero angle, o = 0, of the pendulum
corresponds to inverted pendulum perfectly vertical pointing upwards.

The IPO2 cart location is at linear position x., while the LFJC-PEN cart is located at « ;.. The IP0O2 cart assembly has
mass, m., and is actuated by an applied force, F.. The total mass of the flexible joint cart and pendulum assembly
is mj.. The IP02 and LFJC-PEN carts have equivalent damping terms, B.,, and B, , respectively. The mass of
the pendulum is defined as, m,, with damping, B,, located at the pendulum centre of mass, (z,,v,). The distance
from the pendulum pivot to the centre of mass of the pendulum is [,,.

Figure 2.1: Linear flexible joint cart and single inverted pendulum conventions

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.
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The equations that describe the motions of the IP02 cart, the LFJC cart, and the pendulum with respect to the servo
motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:
0*°L 9L
otdg;  0q;

Qi

The variables ¢; are called generalized coordinates. For this system let
g(t)" = [ze(t) w5 @

where, as shown in Figure 2.1, z.(t) is the IPO2 cart position, ;. is the LFJC cart position, and «(t) is the pendulum
angle. The corresponding velocities are

Note: The dot convention for the time derivative will be used throughout this document, e.g., & = %. The time
variable ¢ will also be dropped from «, z;. and z., i.e., a = a(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

0%L oL 0
toi, dx. !

0*L oL
S - = Qs

8t8xjc axjc
0?L oL 0
doa  da P

The Lagrangian of the system is described
L=T-V

where T'is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces @), are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the IP0O2 cart is

Ql =F. - Beqx.c; (21)
the force acting on the LFJC cart is
Q2 = _Beqjc:tjcv (22)
and the force acting on the pendulum is
Q3 = —Bpa. (2.3)

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the system
can be obtained. See the supplied Maple worksheet (or its equivalent HTML representation) for the complete
derivation.

Based on the system schematic shown in Figure 2.1 and the generalized forces Equation 2.1, Equation 2.2, and
Equation 2.3, the first Lagrange equation can be expressed as:

MeLe — Ks(zjc + xc) =F. - Beq'fm

the second Lagrange equation is




mply Sin(oc)o'z2 — mypl, €0S(a)d + (mje +myp)ije + Ks(je — c) = —Beg;. Tje

and the third Lagrange equation is

mplzd — myplpijc CcOS(a) — mplpg Sin(a) = —Bpa

Solving the three Lagrange equations for the second-order time derivative of the Lagrangian coordinates results in
the following non-linear equations:

1
fc = <Beqm.c KsIc+K‘9$jc+Fc>;
Mg
. 1 , . cos(a)Bya . .
ije = e os(a) — e (mp sin(a)l,a* + Tp + Beg, ijc — Koo + Kj. — cOS(a)myg sm(a)),
and
1 . B B,m;.)&e  COS()Bey. T cos(a) Kz,
& = . (mp cos(a) sin(a)a? + (Bymy j pMye)d + (@)Begsetye _ coS(@) Koz
—my, + my, cos(a)? — mye Zm,, Iy I,

cos(a) Kz jc N —mZgsin(a)l, — mygsin(a)l,m;e
Iy Zmy,

The force applied to the linear cart, F., is generated by the servo motor as described by the equation

Fe

KK, < Ky Ko

Rmrmp

+ Tlme) (2.4)

Tmp

See [1] for a description of the corresponding IP02 parameters (e.g. such as the back-emf constant, K,,).

2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined
T
z' =z 22

and f(z) is to be linearized about the operating point

The linearized function is

0 0
fli" B f(ZO) + ( afif)> z=2zq (Zl - a) + ( gij)) zZ=2z0 (22 - b)
2.1.4 Linear State-Space Model
The linear state-space equations are
T = Ax + Bu (2.5)
and
y=Cz+ Du (2.6)

S
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where z is the state, u is the control input, A, B, C, and D are state-space matrices. For the linear flexible joint cart
and pendulum system, the state and output are defined

xT:[xc Ty, o X Xy d]

and

Z/T = [1‘1 T2 963} .

where z, is the variation in the linear spring length defined z, = z;. — ..

After linearizing the nonlinear equations of motion about the zero angle, and substituting the state given in Equation
2.1.4, we obtain the following state-space matrices:

I8 0 0 1 0 0 -
0 0 0 0 1 0
0 0 0 0 0 1
K Bey
0 0 — 0 0
A = c m
o KoK Mpg Bey  Bey.  Bege B,
Me  Mje Mje Me Mje Mje lpmje
0 . Ks g(mjc + mp) _ BEQjc _ BeqjC B Bp(mjc + mp)
i lymje lymie lyme lyme mplZm;e |
and ] )
0
0
0
B P i
m
f
mC
. 0 -

In the output equation, the position of the IP02 cart, the LFJC cart, and pendulum angle are being measured. Based
on this, the C' and D matrices in the output equation are

1 0 0 0 0 O
C=1]01 0 0 0 O (2.7)
0 01 00O
and
0
D= |0]|. (2.8)
0

Note: The velocities of the servos and pendulum angle can be computed in the digital controller, e.g., by taking the
derivative and filtering the result though a high-pass filter.

2.2 Control

In Section 2.1, we found a linear state-state space model that represents the LFJC-PEN-E system. This model is
used to investigate the stability properties of the system in Section 2.2.1. In Section 2.2.2, the notion of controllability
is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the control gain and
is discussed in Section 2.2.3. Lastly, Section 2.2.4 describes the state-feedback control used to control the servo
position while minimizing link deflection.




2.2.1 Stability

The stability of a system can be determined from its poles ([4]):

e Stable systems have poles only in the left-hand plane.

e Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

e Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of
the system can be found using
det(sI—A)=0 (2.9)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.2 Controllability

If the control input, u, of a system can take each state variable, z; where i = 1...n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([4]).

Rank Test The system is controllable if the rank of its controllability matrix
T =[BABA’B...A"B]| (2.10)
equals the number of states in the system,

rank(T") = n. (2.11)

2.2.3 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.5, find a control input « that minimizes the cost function

J= /OO z(t)' Qx(t) + u(t) Ru(t) dt, (2.12)
0

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law © = — Kz, the state-space in Equation 2.5 becomes

& = Az+B(-Kz)
(A— BK)x

2.2.4 Feedback Control

The feedback control loop that in Figure 2.2 is designed to balance the pendulum by regulating the pendulum angle,
Q.

The reference state is defined
and the controller is therefore

Q
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u=—Kuz, (2.13)




State-Feedback SEESAW-E
Control Plant

Figure 2.2: State-feedback control loop

which is the control used in the LQR algorithm.

To eliminate IP02 servo tracking error, we can augment the system to include an integrator such that

=3 orefe]

where A and B are the state-space matrices defined in Section 2.1.4 and the states are

WT:[% Tje a T Tjc & fxcdt]

This introduces the integration terms 7;(t) = [ 6 dt to the feedback controller

u = K(-n).




3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the VI shown in Figure 3.1 to simulate the closed-loop control of the LFJC-PEN-E system.
The system is simulated using the linear model summarized in Section 2.1. The VI uses the state-feedback control
described in Section 2.2.4. The feedback gain K is found using the LQR command from the Control Design and
Simulation Toolkit (LQR is described briefly in Section 2.2.3). The goal is to make sure the gain used successfully
stabilizes the system (i.e., keeps it balanced), and does not saturate the dc motor.
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Figure 3.1: VI used to simulate LFJC-PEN-E.
IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured

according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the system:

1. Open and run LFJC-PEN-E Control Design.vi as described in Section 4. Make sure you choose your model
file using the Model Path control. The model file is generated using the LFJC-PEN-E Modeling V| by entering
the state space model and exporting the resultant model file.
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2. By default, the Q matrix is sent to identity matrix. Set the LQR weighting matrices to

4000 O 0 00 0 O
0O 400 0 0 0 O O
0 0 3000 0 0 0 O
Q= 0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
| 0 0 0 0 0 0 100]
and
R =0.25.

3. This automatically generates the gain

K:[—138.93 —709.32 304.16 —-95.71 —-116.64 50.05 —20].

LQR Tuning: When tuning the LQR, we start with the identity matrix. To put more emphasis on the IP02 cart
position, and pendulum angle «, we set Q(1,1) = 4000 and (3, 3) = 3000 respectively. The second diagonal
element, Q(2,2) is set to 400 to regulate the spring deflection as a secondary control goal. Finally, a value
of 100 is added to the last diagonal element, Q(7,7) as an integral gain for the IP02 cart to account for any
steady-state error in the IP02 cart position.

4. Run the VI. The scopes should be displaying responses similar to Figure 3.2.

Setpoint (mm) [~
[ =p52lEm] |  Simulsted Position (mm) [

IP02 Cart Position (mm)
40

- 20~
E
E
£ o
8
i,

00 05 10 15 20 25 30 35 40 45 50
Time

00 05 10 15 20 25 30 35 40 45 50
Time

‘endulum Angle (deg)

o
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b b o om e

00 05 10 15 20 25 30 35 40 45 50
Time

“Motor Voitage (V)

( s 107
v 50
5 0-
5 .5
g

-1

0 ' ' ' ' ' ' ' ' ' '
00 05 10 15 20 25 30 35 40 45 50
Time

Motor Voltag

Figure 3.2: Simulated closed-loop response.

5. This is an iterative design process. You can update your Q and R matrices, and acquire a new control gain K
on-the-fly.

6. Click on the STOP button to stop running the VI.




3.1.2 Analysis

As shown by the response in Figure 3.2, the pendulum maintains its balanced vertical position without saturating
the motor voltage. Further analysis can be performed using the Graph Palette.

3.2 Implementation

The SEESAW Balance Control VI shown in Figure 3.3 is used to perform the balance control on the LFJC-PEN. The
VI contains Quanser Rapid Control Prototyping Toolkit® blocks that interface with the dc motor and sensors of the
LFJC-PEN system.

5 LFIC-PEN-E Balance Controlvi Front Panel =8 %
File Edit View Project Operate Tools Window Help =
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20+
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Figure 3.3: VI used to run controller on the LFJC-PEN.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:

1. Make sure gain K is set to the gain you found and simulated in Section 3.1.

2. Make sure that the pendulum is stationary in the downward (gantry) position, and the system is in the
centre of the track.

3. Run the VI.

4. Once the model is running, manually bring the pendulum up to its upright vertical position. You should feel the
motor voltage kick-in when it is within the range where the balance control engages. The scopes should be
displaying responses similar to Figure 3.4.

Note: Once the controller has engaged, do not attempt to manually lower the pendulum. If the pendulum or
carts move outside of a safe workspace, the system should halt the controller automatically.
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Figure 3.4: Typical response when balancing the LFJC-PEN system

5. To stop the experiment, click on the Stop button but make sure you catch the pendulum before it swings

down.

3.2.2 Analysi

The balance control response is shown in Figure 3.5.
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Figure 3.5: LFJC-PEN balance control response

Due to the friction in the system, the IP02 servo oscillates back-and-forth approximately +20 mm to balance the
pendulum. The pendulum angle does not exceed 1.5 degrees when balanced, and the deflection of the spring does
not exceed +£10 mm. Because of the integrator, the IP02 cart eventually returns to the initial 0 mm setpoint.




4 SYSTEM REQUIREMENTS

Required Software

Make sure LabVIEW™ is installed with the following required add-ons:

1. LabVIEW™

NI-DAQmx

NI LabVIEW™ Control Design and Simulation Module
NI LabVIEW™ MathScript RT Module

o kb DN

Quanser Rapid Control Prototyping Toolkit®
Note: Make sure the Quanser Rapid Control Prototyping (RCP) Toolkit is installed after LabVIEW. See the RCP
Toolkit Quick Start Guide for more information.
Required Hardware
e Data acquisition (DAQ) device with 3x encoder inputs and that is compatible with Quanser Rapid Control
Prototyping Toolkit®.
e Quanser IP02 linear servo.
e Quanser LFJC-PEN-E (attached to the IP02).

e Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

e LabVIEW™ is installed on your PC.

e DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the Analog
Loopback Demo).

e LFJC-PEN-E and amplifier are connected to your DAQ board as described its User Manual [3].

D
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4.1 Overview of Files

File Name
LFJC-PEN-E User Manual.pdf

‘ Description ‘
This manual describes the hardware of the LFJC-PEN
system and explains how to setup and wire the system
for the experiments.

LFJC-PEN-E Laboratory Manual.pdf This document demonstrates how to obtain the linear

state-space model of the system, simulate the closed-loop

system, and implement controllers on the LFJC-PEN plant
using LabVIEW™

LFJC-PEN-E Project.lvproj LabVIEW project that contains all the VIs required for the
lab.

LFJC-PEN-E Modeling.vi VI used to generate the linear state-space model of the
LFJC-PEN system.

LFJC-PEN-E Control Design.vi VI used to design the LQR state-feedback gain and simu-
late the LFJC-PEN system.

LFJC-PEN-E Balance Control.vi VI that implements the state-feedback control on the
LFJC-PEN system.

LFJC-PEN-E.mws Maple worksheet used to develop the model for the LFJC-

PEN experiment. Waterloo Maple 9, or a later release, is
required to open, modify, and execute this file.
LFJC-PEN-E.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 9 installed. No modifications to the equations
can be performed when in this format.

Table 4.1: Files supplied with the LFJC-PEN

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the modeling and control design VIs must must be
configured.

Follow these steps:

b ] Project Explorer - LFIC-PEN-E Project.lvproj =B Ed

1. Load LabVIEWTM . File Edit View Project Operate Tocls Window Help
BT IECEE
2. Open the LFJC-PEN-E Project.lvproj LabVIEW project, shown in Fig- ltems | Files
ure 4.1. = [kl Project: LFIC-PEN-E Project.lvproj
= §

i ml LFJC-PEN-E Balance Controlvi
3. Open the LFJC-PEN-E Modeling.vi shown in Figure 4.2. © |l LFIC-PEN-E Control Designai

E‘é_,‘ LFJC-PEN-E Modeling.vi
4. The IP02 cart, LFJC cart and pendulum parameters are already set, T L e seemenions

by default. Run the VI to generate the linear state-space model.

5. In Model Name, enter the name of the model you and click on OK.
This will save the state-space model under the folder Model Files.
You can close this VI now.

6. Open the LFJC-PEN-E Control Design VI, shown in Figure 3.1.

7. Using the File Path control, select the model file.

8. Run the VI. The state-space model should load. You are now ready figyre 4.1: LabVIEW LFJC-PEN-E
to design your LQR control and simulate the closed-loop response. Project
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Figure 4.2: LFJC-PEN-E Modeling VI

4.3 Setup for Running on LFJC-PEN

Before performing the in-lab exercises in Section 3.2, the LFJC-PEN system and the LFJC-PEN-E Balance Control.vi
must be configured properly.

Follow these steps to get the system ready for this lab:

1. Setup the IP02 with the LFJC-PEN module as detailed in the LFJC-PEN User Manual [3].

2. Make sure that the pendulum is stationary in the downward (gantry) position, and the system is in the
centre of the track.

3. Open the LFJC-PEN-E Balance Control.vi, shown in Figure 3.3.
4. Set gain K control in the VI to the value found in Section 4.2 (or another gain you want to test on the system).

5. Configure DAQ: Ensure the HIL Initialize block is configured for the DAQ device that is installed in your system.
To do this, go to the block diagram (CTRL-E) and double click on the HIL Initialize Express VI shown in Figure
4.3.

HIL Initialize

Figure 4.3: HIL Initialize Express VI

6. Under the Main tab, select the data acquisition device that is installed on your system in the Board type section.
For example, in Figure 4.4 the Q8-USB is chosen.

Q
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Figure 4.4: Select DAQ board that will be used to control system
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Nine linear motion plants for teaching fundamental and advanced controls concepts

b IPD2 Base Unit b Linear Flexible Joint with P Linear Pendulum
Inverted Pendulum
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P Linear Flexible Inverted Pendulum ) Linear Double Inverted Pendulum P Linear Flexible Joint

Quanser’s linear collection allows you to create experiments of varying complexity — from basic to advanced. With nine
plants to choose from, students can be exposed to a wide range of topics relating to mechanical and aerospace
engineering. For more information please contact info@quanser.com
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