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1 INTRODUCTION
This laboratory manual describes how to design a state-feedback control system that balances a rotary double
inverted pendulum and positions the rotary arm to a commanded angular position.

The plant has two main components: the Quanser SRV02 rotary motion plant and the Quanser Rotary Double
Inverted Pendulum, i.e., DBPEN-ROT module. The double pendulum is composed of a rotary arm that attaches to
the SRV02 system, a short 7-inch bottom blue rod, an encoder hinge, and the top 12-inch blue rod.

Topics Covered

• Obtain a state-space representation of the open-loop system.

• Design a the state-feedback gain for the closed-loop system using Linear-Quadratic Regulator (LQR) optimiza-
tion.

• Simulate the system and ensure it is stabilized using the designed state-feedback control.

• Implement the state-feedback controller on the DBPEN-ROT system and evaluate its actual performance.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. Hardware and software requirements given in Section 4.

2. Modeling and state-space representation.

3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.

4. Basics of Simulinkr.

5. QUARC Integration lab detailed in Appendix A in the SRV02 Workbook [5].
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2 BACKGROUND

2.1 Modeling

2.1.1 Model Convention

The rotary pendulum model is shown in Figure 2.1. The rotary arm pivot is attached to the SRV02 system and is
actuated. The arm has a length of Lr, a moment of inertia of Jr, and its angle, θ, increases positively when it rotates
counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control voltage
is positive, i.e., Vm > 0.

The double-pendulum assembly is connected to the end of the rotary arm. The short-sized, bottom pendulum has
a total length of Lp1 and a center of mass of lp1. The moment of inertia about its center of mass is Jp1 and it has a
mass ofMp1. The top medium-sized pendulum has a total length of Lp2, a center of mass of lp2, a moment of inertia
of Jp2, and a mass Mp2. The short bottom pendulum angle, α, and the medium top pendulum angle, ϕ, are both
zero when it is perfectly upright in the vertical position and they increase positively when rotated CCW. The hinge
between the two pendulum has a mass of Mh.

Figure 2.1: Rotary Double-Inverted Pendulum conventions
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2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the rotary arm and the pendulum with respect to the
servo motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi

The variables qi are called generalized coordinates. For this system let

q(t)⊤ =
[
θ(t) α(t) ϕ(t

]
where, as shown in Figure 2.1, θ(t) is the rotary arm angle and α(t) is the inverted pendulum angle. The corre-
sponding velocities are

q̇(t)⊤ ==
[
∂θ(t)
∂t

∂α(t)
∂t

∂ϕ(t)
∂t

]
Note: The dot convention for the time derivative will be used throughout this document, e.g., θ̇ = dθ

dt . The time
variable t will also be dropped from θ, α, and ϕ, i.e., θ = θ(t), α = α(t), ϕ = ϕ(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1

∂2L

∂t∂α̇
− ∂L

∂α
= Q2

∂2L

∂t∂ϕ̇
− ∂L

∂ϕ
= Q3

The Lagrangian of the system is described
L = T − V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the rotary arm is

Q1 = τ −Dr θ̇,

and acting on the bottom and top pendulum are

Q2 = −Dp1α̇

and
Q3 = −Dp2ϕ̇.

See [3] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km). Our
control variable is the input servo motor voltage, Vm. Opposing the applied torque is the viscous friction torque, or
viscous damping, corresponding to the term Dr. Since the pendulum is not actuated, the only force acting on the
link is the damping. The viscous damping coefficient of the short (bottom) and medium (top) pendulums are denoted
by Dp1 and Dp2.

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
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derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the system
can be obtained. See the supplied Maple worksheet (or its equivalent HTML representation) for the complete
derivation.

The torque applied at the base of the rotary arm (i.e., at the load gear) is generated by the servo motor as described
by the equation

τ =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm
. (2.1)

See [3] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km).

Both the equations match the typical form of an EOM for a single body:

Jẍ+ bẋ+ g(x) = τ1

where x is an angular position, J is the moment of inertia, b is the damping, g(x) is the gravitational function, and τ1
is the applied torque (scalar value).

For a generalized coordinate vector q, this can be generalized into the matrix form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.2)

where D is the inertial matrix, C is the damping matrix, g(q) is the gravitational vector, and τ is the applied torque
vector.

2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

z⊤ = [z1 z2]

and f(z) is to be linearized about the operating point

z0
⊤ = [a b]

The linearized function is

flin = f(z0) +

(
∂f(z)

∂z1

) ∣∣∣∣
z=z0

(z1 − a) +

(
∂f(z)

∂z2

) ∣∣∣∣
z=z0

(z2 − b)

2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.3)

and
y = Cx+Du (2.4)

where x is the state, u is the control input, A, B, C, andD are state-space matrices. For the rotary pendulum system,
the state and output are defined

x⊤ =
[
θ α ϕ θ̇ α̇ ϕ̇

]
and

y⊤ =
[
x1 x2 x3

]
.
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After linearizing the nonlinear equations of motion, solving for the acceleration terms, i.e., θ̈, α̈, and ϕ̈, and substituting
the state given in , we obtain the following state-space matrices:

A =
1

JT


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 a42 −Mp1lp1LrMp2g(−lp1 + Lp1) 0 0 0
0 a52 −Mp2g(−L2

rLp1Mp1 + Lp1L
2
rMp1 + JrLp1) 0 0 0

0 a62 a63 0 0 0


where

a42 = Lrg(M
2
p1l

2
p1 + 2Mp1lp1MhLp1MhL

2
p1Mp2Mp1l

2
p1Mp2M

2
hL

2
p1)

a52 = g(L2
rLp1Mp1Mp2 + Lp1L

2
rMhMp2 + Lp1L

2
rM

2
h + L2

rLp1M
2
p1 + JrLp1Mh + JrLp1Mp1

+Lp1L
2
rMhMp1 + L2

rLp1MhMp1)

a62 = − g

Lp2

(
Lp1L

2
rLp1M

2
p1 + Lp1L

2
rLp2MhMp1 + L2

rLp1Lp2MhMp1 + Lp1L
2
rLp2M

2
h

+L2
rLp1Lp2M

2
p1 −Mp1L

2
p1L

2
rMp2 + L2

rLp1Lp2Mp1Mp2 + Lp1L
2
rLp2MhMp2 + JrLp1Lp2Mh + JrLp1Lp2Mp1

−Mp1L
2
p1Jr + Lp1JrLp1Mp1 −Mp1L

2
p1MhL

2
r + L2

rLp1Mp2Mp1Lp1 +Mp1Lp1L
2
rMhLp1 − L2

rM
2
p1L

2
p1

)
a63 =

g

Lp2

(
JrLp1Lp2Mp2 + JrL

2
p1Mp2 + L2

p1L
2
rMp1Mp2 +Mp1L

2
p1L

2
rMp2 + Lp1L

2
rLp2Mp1Mp2

−L2
rLp1Lp2Mp1Mp2 +Mp1L

2
p1Jr +MhL

2
p1Jr +MhL

2
p1Mp1L

2
r +Mp1L

2
p1MhL

2
r

−2L2
rLp1Mp2Mp1Lp1 − 2Mp1Lp1L

2
rMhLp1

)
and

B =
1

JT



0
0
0

MhL
2
p1 +Mp1L

2
p1

Lr(MhLp1 +Mp1Lp1)
− Lr

Lp2
(−Mp1L

2
p1 +Mp1Lp1Lp2 +MhLp1Lp2 +Mp1Lp1Lp1)

 .

In the output equation, only the position of the servo and link angles are being measured. Based on this, the C and
D matrices in the output equation are

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.5)

and

D =

00
0

 . (2.6)

Note: In the above model, we ignore the viscous damping paramters Dr, Dp1, and Dp2. For the full state-space
system, see the Maple worksheet.

The velocities of the servo and pendulum angles can be computed in the digital controller, e.g., by taking the deriva-
tive and filtering the result though a high-pass filter.

2.2 Control

In Section 2.1, we found a linear state-state space model that represents the Rotary Double Inverted Pendulum
system. This model is used to investigate the stability properties of the system in Section 2.2.1. In Section 2.2.2,
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the notion of controllability is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way
to find the control gain and is discussed in Section 2.2.3. Lastly, Section 2.2.4 describes the state-feedback control
used to control the servo position while minimizing link deflection.

2.2.1 Stability

The stability of a system can be determined from its poles ([7]):

• Stable systems have poles only in the left-hand plane.

• Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

• Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of
the system can be found using

det (sI −A) = 0 (2.7)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.2 Controllability

If the control input, u, of a system can take each state variable, xi where i = 1 . . . n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([7]).

Rank Test The system is controllable if the rank of its controllability matrix

T =
[
B AB A2B . . . AnB

]
(2.8)

equals the number of states in the system,
rank(T ) = n. (2.9)

2.2.3 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.3, find a control input u that minimizes the cost function

J =

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) dt, (2.10)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law u = −Kx, the state-space in Equation 2.3 becomes

ẋ = Ax+B(−Kx)

= (A−BK)x

2.2.4 Feedback Control

The feedback control loop that in Figure 2.2 is designed to stabilize the servo to a desired position, θd, while mini-
mizing the deflection of the pendulum.
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The reference state is defined
xd =

[
θd 0 0 0 0 0

]
and the controller is

u = K(xd − x). (2.11)

Note that if xd = 0 then u = −Kx, which is the control used in the LQR algorithm.

Figure 2.2: State-feedback control loop

To eliminate servo tracking error, we can augment the system to include an integrator such that

η̇ =

[
A 0
1 0

]
η +

[
B
0

]
u

where A and B are the state-space matrices defined in Section 2.1.4 and the states are

η⊤ =
[
θ α ϕ θ̇ α̇ ϕ̇

∫
θ dt

]
and

ηd
⊤ =

[
θd 0 0 0 0 0

∫
θd dt

]
.

This introduces the integration terms η7(t) =
∫
θ dt to the feedback controller

u = K(ηd − η).
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3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the Simulink diagram shown in Figure 3.1 to simulate the closed-loop control of the Rotary
Double Inverted Pendulum system. The system is simulated using the linear model summarized in Section 2.1.
The Simulink model uses the state-feedback control described in Section 2.2.4. The feedback gain K is found
using the Matlab LQR command (LQR is described briefly in Section 2.2.3). The goal is to make sure the gain used
successfully stabilizes the system (i.e., keeps it inverted), tracks the reference servo position, and does not saturate
the dc motor.

Figure 3.1: Simulink model used to simulate Rotary Double Inverted Pendulum.

The state-feedback controller has proportional-derivative (PD) action and the integral (I) action. The PD Control
Gain block shown in Figure 3.1 multiplies the position and velocity states of the model by the first six elements of
the vector gain k computed in earlier in, i.e., k(1 : 6) = [k1, k2, k3, k4, k5, k6]. The integral action is implemented in
the Integral Control subsystem.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the system:

1. Make sure the LQR weighting matrices in setup dbip.m are to

Q =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0.5


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and
R = 30.

2. Run the script to generate the gain

K =
[
0.4777 −14.4195 −43.1956 0.5365 −5.5311 −4.3321 0.1291

]
.

LQR Tuning: When tuning the LQR, we start with the identity matrix. To put more emphasis on the top /
medium pendulum angle ϕ, we set Q(4, 4) = 5. The last diagonal element, Q(7, 7) is set to 0.5 to generate a
small integral gain for the servo tracking.

3. To generate a 0.02 Hz square wave reference, ensure the Signal Generator is set to the following:

• Signal type = square
• Amplitude = 1
• Frequency = 0.02 Hz

4. Set the Amplitude (deg) gain blocks to 30 to generate a step with an amplitude of 30 degrees.

5. Open the servo gear position scope, theta l (rad), the bottom pendulum angle scope, alpha (deg), the top
pendulum angle scope, phi (deg), and the motor input voltage scope, Vm (V).

6. Start the simulation. By default, the simulation runs for 100 seconds. The scopes should be displaying re-
sponses similar to Figure 3.2. Note that in the theta l (rad) scopes, the yellow trace is the setpoint position
while the purple trace is the simulated position.

(a) SRV02 Angle (b) Short / Bottom Pendulum Angle

(c) Medium / Top Pendulum Angle (d) Voltage

Figure 3.2: Simulated closed-loop response.
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3.1.2 Analysis

The feedback response is shown in Figure 3.3. You can generate this figure by running the plot response dbip.m
script.

Figure 3.3: Simulated Rotary Double Inverted Pendulum feedback response.

As shown by the response in Figure 3.3, the pendulum maintains its balance about the upright vertical position while
tracking the ± 30 degree servo angle.

Generating the Matlab figure: After each simulation run, each scope automatically saves their response to a
variable in the Matlabrworkspace. The theta (deg) scope saves its response to the variable called data theta,
the alpha (deg) scope saves its data to the data alpha variable, the phi (deg) scope saves its data to the data phi
variable, and the Vm (V) scope saves its plot to the data vm variable. See the plot response dbip.m script to see
how they are used for plotting.

3.2 Implementation

The q 2bip Simulink diagram shown in Figure 3.4 is used to perform the balance control on the DBPEN-ROT. The
DBPEN-ROT subsystem contains QUARCrblocks that interface with the DCmotor and sensors of the DBPEN-ROT
system.

The interior of the DBPEN-ROT subsystem is shown in Figure 3.5. The Enable Control subsystem outputs 1 when
the pendulum angles are within the value in the Desired Initial Angle (deg) source block. By default, the controller
is enabled when they are within 1.5 degrees. In the Integral Control subsystem (in the main q dbip diagram), the
integrator is reset to 0 when the controller is enabled.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:
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Figure 3.4: Simulink model used with QUARCrto run controller on the DBPEN-ROT.

Figure 3.5: DBPEN-ROT subsystem in q dbip Simulink diagram

1. Run the setup dbip.m script using the LQR weighting matrices that you used in the simulation in Section 3.1.

2. Set the Amplitude gain block to 0 to turn off the servo setpoint.

3. Open the servo gear position scope, theta l (rad), the bottom pendulum angle scope, alpha (deg), the top
pendulum angle scope, phi (deg), and the motor input voltage scope, Vm (V).

4. In the Simulink diagram, go to QUARC | Build.

5. Make sure the pendulum assembly is in the hanging down position and motionless. The Simulink
diagram will measures the short pendulum angle, α, as -180 degrees.

6. Click on QUARC | Start to run the controller. The scopes should all be reading 0 except for alpha (deg) - it
should read -180 degrees.

7. Manually rotate the pendulum assembly to the upright vertical position. Do this slowly and keep the bottom
and top pendulums straight and in-line with each other. Once the control engages, immediately release the
pendlum and let the servo balance the links. The scopes should be displaying responses similar to Figure
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3.6. Note that in the theta x (deg) and theta y (deg) scopes, the yellow trace is the setpoint position while the
purple trace is the measured position.

(a) SRV02 Angle (b) Short / Bottom Pendulum Angle

(c) Medium / Top Pendulum Angle (d) Voltage

Figure 3.6: Typical response when running control on DBPEN-ROT system

8. To stop the experiment, click on the QUARC | Stop button but make sure you catch the pendulum before it
swings down. This will prevent the assembly from hitting the table surface.

3.2.2 Analysis

The closed-loop position response is shown in Figure 3.7. You can generate this using the plot response dbip.m
script after running the q dbip QUARC controller.

Due to the friction in the system, the servo oscillates back-and-forth approximately ±10 degrees to balance the
double pendulum. Because of the integrator, the servo eventually stabilizes about the 0 degree setpoint. In the
alpha (deg) scope, the pendulum angle goes up from -180 degrees to 0 at which point the balance control is engaged
(around the 2.5 second mark).

DBPEN-ROT Laboratory Guide DRAFT - May 14, 2012



Figure 3.7: DBPEN-ROT balance control response
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4 SYSTEM REQUIREMENTS
Required Software

• Microsoft Visual Studio (MS VS)

• Matlabr with Simulinkr, Real-Time Workshop, and the Control System Toolbox

• QUARCr

See the QUARCrsoftware compatibility chart in [4] to see what versions of MS VS and Matlab are compatible with
your version of QUARC and for what OS.

Required Hardware

• Data acquisition (DAQ) device with 3x encoder inputs and that is compatible with QUARCr. This includes
Quanser DAQ boards such as Q8-USB, QPID, and QPIDe and some National Instruments DAQ devices. For
a full listing of compliant DAQ cards, see Reference [1].

• Quanser SRV02-ET rotary servo.

• Quanser Rotary Double Inverted Pendulum (attached to the load gear of the SRV02).

• Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

• QUARCris installed on your PC, as described in [2].

• DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the QUARC
Analog Loopback Demo).

• Rotary Double Inverted Pendulum and amplifier are connected to your DAQ board as described its User
Manual [6].
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4.1 Overview of Files

File Name Description
Rotary Double Inverted Pendulum User
Manual.pdf

This manual describes the hardware of the DBPEN-ROT
system and explains how to setup and wire the system for
the experiments.

Rotary Double Inverted Pendulum Lab-
oratory Guide.pdf

This document demonstrates how to obtain the linear
state-space model of the system, simulate the closed-loop
system, and implement controllers on the DBPEN-ROT
plant using QUARCr.

setup dbip.m The main Matlab script that sets the SRV02 motor and
sensor parameters, the SRV02 configuration-dependent
model parameters, and the DBPEN-ROT sensor param-
eters. Run this file only to setup the laboratory.

config srv02.m Returns the configuration-based SRV02 model specifica-
tions Rm, kt, km, Kg, eta g, Beq, Jeq, and eta m, the
sensor calibration constants K POT, K ENC, and K TACH,
and the amplifier limits VMAX AMP and IMAX AMP.

config sp.m Returns the pendulum model parameters.
s dbip.mdl Simulink file that simulates the closed-loop control of a

Rotary Double Inverted Pendulum system using state-
feedback control.

q dbip.mdl Simulink file that implements the state-feedback control
on the Rotary Double Inverted Pendulum system using
QUARCr.

dbpen-rot.mws Maple worksheet used to develop the model for the
DBPEN-ROT experiment. Waterloo Maple 9, or a later
release, is required to open, modify, and execute this file.

dbpen-rot.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 9 installed. No modifications to the equations
can be performed when in this format.

plot response dbip.m Plots the response found in the variables data theta,
data alpha, data phi, and data vm in the Matlab
workspace. These variables are saved from the Simulink
diagrams.

meas step rsp specs.m Function that measures the peak time, settling time,
steady-state error, and percent overshoot of a given step
response.

Table 4.1: Files supplied with the DBPEN-ROT

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the s dbip Simulink diagram and the setup dbip.m
script must be configured.

Follow these steps:

1. Load the Matlab software.

2. Browse through the Current Directory window in Matlab and find the folder that contains the file setup dbip.m.

3. Open the setup dbip.m script.
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4. Configure setup dbip.m script: When used with the DBPEN-ROT, the SRV02 has no load (i.e., no disc or
bar) and has to be in the high-gear configuration. Make sure the script is setup to match this setup:

• EXT GEAR CONFIG to 'HIGH'
• LOAD TYPE to 'NONE'
• K AMP to 1 (unless your amplifier gain is different)
• AMP TYPE to your amplifier type (e.g., VoltPAQ).
• Ensure other parameters such as ENCODER TYPE, TACH OPTION, and VMAX DAC match your sys-
tem configuration.

5. Run setup dbip.m to setup the Matlab workspace.

6. Open the s dbip.mdl Simulink diagram, shown in Figure 3.1.

4.3 Setup for Running on DBPEN-ROT

Before performing the in-lab exercises in Section 3.2, the q dbip Simulink diagram and the setup dbip.m script must
be configured.

Follow these steps to get the system ready for this lab:

1. Setup the SRV02 with the DBPEN-ROT module as detailed in the DBPEN-ROT User Manual [6].

2. Make sure the pendulum is in the hanging, downward position. For more information, go to the DBPEN-
ROT User Manual [6].

3. Configure and run setup dbip.m as explained in Section 4.2.

4. Open the q dbip.mdl Simulink diagram, shown in Figure 3.4.

5. Configure DAQ: Ensure the HIL Initialize block in the DBPEN-ROT subsystem is configured for the DAQ
device that is installed in your system. See Reference [1] for more information on configuring the HIL Initialize
block.
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