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1 INTRODUCTION
The objective of this experiment is to control the position of the servo while minimizing the motions the flexible rotary
link.

Topics Covered

• Modeling the Rotary Flexible Joint using Lagrange.

• Find the linear state-space model of the system.

• Do some basic model validation.

• Design a state-feedback controller using Pole-Placement (PP).

• Simulate the closed-loop flexible joint system.

• Implement the designed controller on the device.

• Compare the simulated and measured closed-loop results.

• Assess the behaviour of implementing a partial-state feedback controller.

Prerequisites

In order to successfully carry out this laboratory, the user should be familiar with the following:

• Basics of Simulinkr.

• Transfer function fundamentals.

• State-space modeling, e.g., obtaining state equations from a set of differential equations.

• SRV02 QUARC Integration Laboratory ([3]) in order to be familiar using QUARCrwith the SRV02.
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2 MODELING

2.1 Background

2.1.1 Model

The Rotary Flexible Joint model is shown in Figure 2.1. The base of the module is mounted on the load gear of the
SRV02 system. The servo angle, θ, increases positively when it rotates counter-clockwise (CCW). The servo (and
thus the link) turn in the CCW direction when the control voltage is positive, i.e., Vm > 0.

The total length of the link can be varied by changing the mounting position of the shorter top arm. The main bottom
arm, which is connected to the pivot, has a length of L1 and a mass of m1. The length and mass of the top link is
L2 andm2. The distance between the pivot and the middle of the top arm, which can be changed, is denoted by the
variable d12. The moment of inertia of the entire link is specified by Jl and it changes depending on the position of
the top arm. See the Rotary Flexible Joint User Manual (in [7]) for the values of these parameters. The deflection
angle of the link is denoted as α and increases positively when rotated CCW.

Figure 2.1: Rotary Flexible Joint Angles

The flexible joint system can be represented by the diagram shown in Figure 2.2. Our control variable is the input
servo motor voltage, Vm. This generates a torque, τ , at the load gear of the servo that rotates the base of the link.
The viscous friction coefficient of the servo is denoted by Beq. This is the friction that opposes the torque being
applied at the servo load gear. The friction acting on the link is represented by the viscous damping coefficient Bl.
Finally, the flexible joint is modeled as a linear spring with the stiffness Ks.

Figure 2.2: Rotary Flexible Joint Model
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2.1.2 Finding the Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.

More specifically, the equations that describe the motions of the servo and the link with respect to the servo motor
voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi (2.1)

The variables qi are called generalized coordinates. For this system let

q(t)⊤ = [θ(t) α(t)] (2.2)

where, as shown in Figure 2.2, θ(t) is the servo angle and α(t) is the flexible joint angle. The corresponding velocities
are

q̇(t)⊤ =

[
∂θ(t)

∂t

∂α(t)

∂t

]

Note: The dot convention for the time derivative will be used throughout this document, i.e., θ̇ = dθ
dt and α̇ = dα

dt .
The time variable t will also be dropped from θ and α, i.e., θ := θ(t) and α := α(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary flexible joint system are

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1 (2.3)

and
∂2L

∂t∂α̇
− ∂L

∂α
= Q2 (2.4)

The Lagrangian of a system is defined
L = T − V (2.5)

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the rotary arm is

Q1 = τ −Beq θ̇ (2.6)

and acting on the link is
Q2 = −Blα̇. (2.7)

The torque applied at the base of the rotary arm (i.e., at the load gear) is generated by the servo motor as described
by the equation

τ =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm
. (2.8)

See [5] for a description of the corresponding SRV02 parameters (e.g. such as the back-emf constant, km). The
servo damping (i.e. friction), Beq, opposes the applied torque. The flexible joint is not actuated, the only force acting
on the link is the damping, Bl.

Again, the Euler-Lagrange equations is a systematic method of finding the equations of motion (EOMs) of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs.
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2.1.3 Potential and Kinetic Energy

Kinetic Energy
Translational kinetic equation is defined as

T =
1

2
mv2, (2.9)

where m is the mass of the object and v is the linear velocity.

Rotational kinetic energy is described as
T =

1

2
Jω2 (2.10)

where J is the moment of inertia of the object and ω is its angular rate.

Potential Energy
Potential energy comes in different forms. Typically in mechanical system we deal with gravitational and elastic
potential energy. The relative gravitational potential energy of an object is

Vg = mg∆h, (2.11)

where m is the object mass and ∆h is the change in altitude of the object (from a reference point). The potential
energy of an object that rises from the table surface (i.e., the reference) up to 0.25 meter is ∆h = 0.25 − 0 = 0.25
and the energy stored is Vg = 0.25mg.

The equation for elastic potential energy, i.e., the energy stored in a spring, is

Ve =
1

2
K∆x2 (2.12)

where K is the spring stiffness and ∆x is the linear or angular change in position. If an object that is connected to
a spring moves from in its initial reference position to 0.1 m, then the change in displacement is ∆x = 0.1− 0 = 0.1
and the energy stored equals Ve = 0.005K.

2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.13)

and
y = Cx+Du (2.14)

where x is the state, u is the control input, A, B, C, and D are state-space matrices. For the Rotary Flexible Joint
system, the state and output are defined

x⊤ = [θ α θ̇ α̇] (2.15)

and
y⊤ = [x1 x2]. (2.16)

In the output equation, only the position of the servo and link angles are being measured. Based on this, the C and
D matrices in the output equation are

C =

[
1 0 0 0
0 1 0 0

]
(2.17)

and
D =

[
0
0

]
. (2.18)

The velocities of the servo and link angles can be computed in the digital controller, e.g., by taking the derivative
and filtering the result though a high-pass filter.
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2.1.5 Finding Second Order System Parameters

Consider a second-order system described by

Jẍ+Bẋ+Kx = 0. (2.19)

Assuming the initial conditions x(0−) = x0 and ẋ(0−) = 0, the Laplace transform of Equation 2.19 is

X(s) =
x0

J

s2 + B
J s+

K
J

(2.20)

The prototype second-order equation is defined

s2 + 2ζωns+ ω2
n,

where ζ is the damping ratio and ωn is the natural frequency. Equating the characteristic equation in 2.20 to this
gives

ω2
n =

K

J

and
2ζωn =

B

J

Based on the measured damping ratio and natural frequency, the friction (or stiffness) of the system is

K = Jω2
n (2.21)

and the viscous damping is
B = 2ζωnJ. (2.22)

The natural frequency and damping ratio of a system can be found experimentally, e.g., from a free-oscillation
response or frequency response.

2.1.6 Power Spectrum

Fourier is a way to represent a signal in terms of sinusoidals. The Fourier transform, or spectrum, of a signal g(t) is
denoted as G(ω) and it shows the relative amplitudes and frequencies of the sinusoidals that are used to represent
that signal [9].

The Fourier transform contains both the magnitude and phase information. The power spectrum of a signal is based
on the magnitude of the signal. Figure 2.3, for example, show the power spectrum of the compound sine wave signal

g(t) = 3 sin 2πt+ 2 sin 4πt+ 0.5 sin 10πt.

The spectrum shows the peaks occurring at the sine wave frequencies 1, 2, and 5 Hz. Similarly, this can be used to
find the resonant frequencies of an actual system.

The power of a signal is the time-average of the its squared value [9] and, for a continuous signal g(t), is defined

Pg = lim
T→∞

1

T

∫ T/2

−T/2

g(t)2dt.

We want to define the power of the signal from its transform. First consider the truncated signal of g(t) defined as

gT (t) =

{
g(t) |t| ≤ T

0 |t| > T
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Figure 2.3: Power spectrum of compound sine wave

From Parseval's theorem, the energy of this signal equals [9]

EgT =

∫ ∞

−∞
gT (t)

2dt =
1

2π

∫ ∞

−∞
|GT (ω)|2dω

The power of a signal can then be expressed as

Pg = lim
T→∞

EgT

T

=
1

2π
lim

T→∞

∫ ∞

−∞

|GT (ω)|2

T
dω.

The power spectral density (PSD) function is

Sg(ω) = lim
T→∞

|GT (ω)|2

T
(2.23)

Defining the signal power in terms of the PSD and considering only positive frequencies we get

Pg =
1

2π

∫ ∞

−∞
Sg(ω)dω

=
1

π

∫ ∞

0

Sg(ω)dω

Expressing this in term of Hertz we get the expression

Pg = 2

∫ ∞

0

Sg(ω)df (2.24)

In practice, signals are sampled and the algorithm is performed in discrete mode. The Fast-Fourier Transform
(FFT) is a computational algorithm used to find the Fourier transform of a signal, i.e., taking the FFT of a signal g(t)
generates G(ω). To find the power spectrum, code similar to the following would be used
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