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1 INTRODUCTION
This laboratory manual describes how to design a state-feedback control system that can balance an inverted pen-
dulum mounted on the linear flexible joint cart while minimizing the spring deflection.

The plant has two main components: the Quanser IP02 linear motion plant and the Quanser LFJC-PEN-E module.

Topics Covered

• Obtain a state-space representation of the open-loop system.

• Design and tune an LQR-based state-feedback controller satisfying the closed-loop system's desired design
specifications.

• Simulate the system and ensure it is stabilized using the designed state-feedback control.

• Implement the state-feedback controller on the LFJC-PEN system and evaluate its actual performance.

Prerequisites
In order to successfully carry out this laboratory, the user should be familiar with the following:

1. See the system requirements in Section 4 for the required hardware and software.

2. Modeling and state-space representation.

3. State-feedback design using Linear-Quadratic Regular (LQR) optimization.

4. Basics of Simulinkr.

5. QUARC Integration lab detailed in Appendix A in the IP02 Lab Workbook [5].
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2 BACKGROUND

2.1 Modeling

2.1.1 Model Convention

The single inverted pendulum and linear flexible joint cart model is shown in Figure 2.1. The LFJC-PEN module
is coupled to the IP02 Linear Servo Base Unit through a linear spring with equivalent stiffness Ks. The positive
sense of linear displacement is to the right when facing the cart. The positive sense of rotation of the pendulum is
defined to be counter-clockwise (CCW), when facing the cart pinions. Finally, the zero angle, α = 0, of the pendulum
corresponds to inverted pendulum perfectly vertical pointing upwards.

The IP02 cart location is at linear position xc, while the LFJC-PEN cart is located at xjc. The IP02 cart assembly has
mass, mc, and is actuated by an applied force, Fc. The total mass of the flexible joint cart and pendulum assembly
is mjc. The IP02 and LFJC-PEN carts have equivalent damping terms, Beq, and Beqjc , respectively. The mass of
the pendulum is defined as, mp, with damping, Bp, located at the pendulum centre of mass, (xp, yp). The distance
from the pendulum pivot to the centre of mass of the pendulum is lp.

Figure 2.1: Linear flexible joint cart and single inverted pendulum conventions

2.1.2 Nonlinear Equations of Motion

Instead of using classical mechanics, the Lagrange method is used to find the equations of motion of the system.
This systematic method is often used for more complicated systems such as robot manipulators with multiple joints.
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The equations that describe the motions of the IP02 cart, the LFJC cart, and the pendulum with respect to the servo
motor voltage, i.e. the dynamics, will be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi

The variables qi are called generalized coordinates. For this system let

q(t)⊤ =
[
xc(t) xjc α

]
where, as shown in Figure 2.1, xc(t) is the IP02 cart position, xjc is the LFJC cart position, and α(t) is the pendulum
angle. The corresponding velocities are

q̇(t)⊤ =
[
∂xc(t)
∂t

∂xjc(t)
∂t

∂α(t)
∂t

]

Note: The dot convention for the time derivative will be used throughout this document, e.g., α̇ = dα
dt . The time

variable t will also be dropped from α, xjc and xc, i.e., α = α(t).

With the generalized coordinates defined, the Euler-Lagrange equations for the rotary pendulum system are

∂2L

∂t∂ẋc
− ∂L

∂xc
= Q1

∂2L

∂t∂ẋjc
− ∂L

∂xjc
= Q2

∂2L

∂t∂α̇
− ∂L

∂α
= Q3

The Lagrangian of the system is described
L = T − V

where T is the total kinetic energy of the system and V is the total potential energy of the system. Thus the Lagrangian
is the difference between a system's kinetic and potential energies.

The generalized forces Qi are used to describe the non-conservative forces (e.g., friction) applied to a system with
respect to the generalized coordinates. In this case, the generalized force acting on the IP02 cart is

Q1 = Fc −Beqẋc, (2.1)

the force acting on the LFJC cart is
Q2 = −Beqjc ẋjc, (2.2)

and the force acting on the pendulum is
Q3 = −Bpα̇. (2.3)

The Euler-Lagrange equations is a systematic method of finding the equations of motion, i.e., EOMs, of a system.
Once the kinetic and potential energy are obtained and the Lagrangian is found, then the task is to compute various
derivatives to get the EOMs. After going through this process, the nonlinear equations of motion for the system
can be obtained. See the supplied Maple worksheet (or its equivalent HTML representation) for the complete
derivation.

Based on the system schematic shown in Figure 2.1 and the generalized forces Equation 2.1, Equation 2.2, and
Equation 2.3, the first Lagrange equation can be expressed as:

mcẍc −Ks(xjc + xc) = Fc −Beqẋc,

the second Lagrange equation is
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mplp sin(α)α̇2 −mplp cos(α)α̈+ (mjc +mp)ẍjc +Ks(xjc − xc) = −Beqjc ẋjc

and the third Lagrange equation is

mpl
2
pα̈−mplpẍjc cos(α)−mplpg sin(α) = −Bpα̇

Solving the three Lagrange equations for the second-order time derivative of the Lagrangian coordinates results in
the following non-linear equations:

ẍc =
1

mc

(
−Beqẋc −Ksxc +Ksxjc + Fc

)
,

ẍjc =
1

−mp +mp cos(α)2 −mjc

(
mp sin(α)lpα̇2 +

cos(α)Bpα̇

lp
+Beqjc ẋjc −Ksxc +Ksxjc − cos(α)mpg sin(α)

)
,

and

α̈ =
1

−mp +mp cos(α)2 −mjc

(
mp cos(α) sin(α)α̇2 +

(Bpmp +Bpmjc)α̇

l2pmp
+
cos(α)Beqjc ẋjc

lp
− cos(α)Ksxc

lp

+
cos(α)Ksxjc

lp
+

−m2
pg sin(α)lp −mpg sin(α)lpmjc

l2pmp

)

The force applied to the linear cart, Fc, is generated by the servo motor as described by the equation

Fc =
ηgKgKt

Rmrmp

(
−KgKmẋc

rmp
+ ηmVm

)
(2.4)

See [2] for a description of the corresponding IP02 parameters (e.g. such as the back-emf constant, Km).

2.1.3 Linearizing

Here is an example of how to linearize a two-variable nonlinear function called f(z). Variable z is defined

z⊤ = [z1 z2]

and f(z) is to be linearized about the operating point

z0
⊤ = [a b]

The linearized function is

flin = f(z0) +

(
∂f(z)

∂z1

) ∣∣∣∣
z=z0

(z1 − a) +

(
∂f(z)

∂z2

) ∣∣∣∣
z=z0

(z2 − b)

2.1.4 Linear State-Space Model

The linear state-space equations are
ẋ = Ax+Bu (2.5)

and
y = Cx+Du (2.6)
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where x is the state, u is the control input, A, B, C, and D are state-space matrices. For the linear flexible joint cart
and pendulum system, the state and output are defined

x⊤ =
[
xc xs α ẋc ẋs α̇

]
and

y⊤ =
[
x1 x2 x3

]
.

where xs is the variation in the linear spring length defined xs = xjc − xc.

After linearizing the nonlinear equations of motion about the zero angle, and substituting the state given in Equation
2.1.4, we obtain the following state-space matrices:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
Ks

mc
0 −Beq

mc
0 0

0 −Ks

mc
− Ks

mjc

mpg

mjc

Beq

mc
−

Beqjc

mjc
−Beqjc

mjc
− Bp

lpmjc

0 − Ks

lpmjc

g(mjc +mp)

lpmjc
−
Beqjc

lpmjc
−
Beqjc

lpmjc
−Bp(mjc +mp)

mpl2pmjc


and

B =



0
0
0
1

mc

− 1

mc
0


.

In the output equation, the position of the IP02 cart, the LFJC cart, and pendulum angle are being measured. Based
on this, the C and D matrices in the output equation are

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.7)

and

D =

00
0

 . (2.8)

Note: The velocities of the servos and pendulum angle can be computed in the digital controller, e.g., by taking the
derivative and filtering the result though a high-pass filter.

2.2 Control

In Section 2.1, we found a linear state-state space model that represents the LFJC-PEN-E system. This model is
used to investigate the stability properties of the system in Section 2.2.1. In Section 2.2.2, the notion of controllability
is introduced. Using the Linear Quadratic Regular algorithm, or LQR, is a common way to find the control gain and
is discussed in Section 2.2.3. Lastly, Section 2.2.4 describes the state-feedback control used to control the servo
position while minimizing link deflection.
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2.2.1 Stability

The stability of a system can be determined from its poles ([7]):

• Stable systems have poles only in the left-hand plane.

• Unstable systems have at least one pole in the right-hand plane and/or poles of multiplicity greater than 1 on
the imaginary axis.

• Marginally stable systems have one pole on the imaginary axis and the other poles in the left-hand plane.

The poles are the roots of the system's characteristic equation. From the state-space, the characteristic equation of
the system can be found using

det (sI −A) = 0 (2.9)

where det() is the determinant function, s is the Laplace operator, and I the identity matrix. These are the eigenvalues
of the state-space matrix A.

2.2.2 Controllability

If the control input, u, of a system can take each state variable, xi where i = 1 . . . n, from an initial state to a final
state then the system is controllable, otherwise it is uncontrollable ([7]).

Rank Test The system is controllable if the rank of its controllability matrix

T =
[
B AB A2B . . . AnB

]
(2.10)

equals the number of states in the system,
rank(T ) = n. (2.11)

2.2.3 Linear Quadratic Regular (LQR)

If (A,B) are controllable, then the Linear Quadratic Regular optimization method can be used to find a feedback
control gain. Given the plant model in Equation 2.5, find a control input u that minimizes the cost function

J =

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) dt, (2.12)

where Q and R are the weighting matrices. The weighting matrices affect how LQR minimizes the function and are,
essentially, tuning variables.

Given the control law u = −Kx, the state-space in Equation 2.5 becomes

ẋ = Ax+B(−Kx)

= (A−BK)x

2.2.4 Feedback Control

The feedback control loop that in Figure 2.2 is designed to balance the pendulum by regulating the pendulum angle,
α.

The reference state is defined
xd =

[
0 0 0 0 0 0

]
and the controller is therefore

u = −Kx, (2.13)
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Figure 2.2: State-feedback control loop

which is the control used in the LQR algorithm.

To eliminate IP02 servo tracking error, we can augment the system to include an integrator such that

η̇ =

[
A 0
1 0

]
η +

[
B
0

]
u

where A and B are the state-space matrices defined in Section 2.1.4 and the states are

η⊤ =
[
xc xjc α ẋc ẋjc α̇

∫
xc dt

]
This introduces the integration terms η7(t) =

∫
θ dt to the feedback controller

u = K(−η).
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3 LAB EXPERIMENTS

3.1 Simulation

In this section we will use the Simulink diagram shown in Figure 3.1 to simulate the closed-loop control of the LFJC-
PEN-E system. The system is simulated using the linear model summarized in Section 2.1. The Simulink model
uses the state-feedback control described in Section 2.2.4. The feedback gain K is found using the Matlab LQR
command (LQR is described briefly in Section 2.2.3). The goal is to make sure the gain used successfully stabilizes
the system (i.e., keeps it balanced), minimizes the deflection of the spring, and does not saturate the dc motor.

Figure 3.1: Simulink model used to simulate LFJC-PEN-E.

The state-feedback controller has proportional-derivative (PD) action and the integral (I) action. The Find State X
block shown in Figure 3.1 creates the complete state vector using a differentiating filter and integral block. The
position and velocity states of the model are then multiplied by the vector gain k computed in earlier in, i.e., k(1 :
5) = [k1, k2, k3, k4, k5, k6, k7]. The Signal Generator introduces a small disturbance into the system.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.1.1 Procedure

Follow these steps to simulate the system:

1. Make sure the LQR weighting matrices in setup ip02 lfjc pen.m are set to

Q =



4000 0 0 0 0 0 0
0 400 0 0 0 0 0
0 0 3000 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 100


and

R = 0.25.

2. Run the script to generate the gain

K =
[
−138.93 −709.32 304.16 −95.71 −116.64 50.05 −20

]
.

LQR Tuning: When tuning the LQR, we start with the identity matrix. To put more emphasis on the IP02 cart
position, and pendulum angle α, we set Q(1, 1) = 4000 and Q(3, 3) = 3000 respectively. The second diagonal
element, Q(2, 2) is set to 400 to regulate the spring deflection as a secondary control goal. Finally, a value
of 100 is added to the last diagonal element, Q(7, 7) as an integral gain for the IP02 cart to account for any
steady-state error in the IP02 cart position.
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3. To generate a disturbance, ensure the Signal Generator is set to the following:

• Wave Form = Square
• Amplitude = 0.02 m
• Frequency = 0.5 Hertz

4. Open the IP02 cart position scope, IP02 Cart Position (mm), the spring deflection scope, Spring Deflection
(mm), the pendulum angle scope, Pendulum Angle (deg), and the motor input voltage scope, Motor Voltage
(V).

5. Start the simulation. The scopes should be displaying responses similar to Figure 3.2.

(a) IP02 Cart Position (b) Spring Deflection

(c) Pendulum Angle (d) Voltage

Figure 3.2: Simulated closed-loop response.
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3.1.2 Analysis

The feedback response is shown in Figure 3.3. You can generate this figure by running the plot command.

Figure 3.3: Simulated LFJC-PEN-E feedback response.

As shown by the response in Figure 3.3, the pendulum maintains its balanced vertical position without saturating
the motor voltage.

Generating the Matlab figure: After each simulation run, each scope automatically saves their response to a
variable in the Matlabrworkspace. The IP02 Cart Position (mm) scope saves its response to the variable called
data xc, the Spring Deflection (mm) scope saves its data to the data xs variable, the Pendulum Angle (deg) scope
saves its data to the data alpha variable, and the Motor Voltage (V) scope saves its plot to the data vm variable.

LFJC-PEN Laboratory Guide DRAFT - November 14, 2012



3.2 Implementation

The q sswe Simulink diagram shown in Figure 3.4 is used to perform the balance control on the LFJC-PEN. The
IP02 and LFJC-PEN-E subsystem contains QUARCrblocks that interface with the DC motor and sensors of the
LFJC-PEN system.

Figure 3.4: Simulink model used with QUARCrto run controller on the LFJC-PEN.

IMPORTANT: Before you can conduct these experiments, you need to make sure that the lab files are configured
according to your setup. If they have not been configured already, then you need to go to Section 4 to configure the
lab files first.

3.2.1 Procedure

Follow this procedure:

1. Run the setup ip02 lfjc pen.m script using the LQRweightingmatrices that you used in the simulation in Section
3.1.

2. Open the IP02 cart position scope, xc (mm), the spring deflection scope, xs (mm), the pendulum angle scope,
alpha (deg), and the motor voltage scope, V Command (V), located in the IP02 and LFJC-PEN-E subsystem.

3. In the Simulink diagram, go to QUARC | Build.

4. Make sure that the pendulum is stationary in the downward (gantry) position, and the system is in the
centre of the track.

5. Click on QUARC | Start to run the controller.

6. Once the model is running, manually bring the pendulum up to its upright vertical position. You should feel the
motor voltage kick-in when it is within the range where the balance control engages. The scopes should be
displaying responses similar to Figure 3.5.
Note: Once the controller has engaged, do not attempt to manually lower the pendulum. If the pendulum or
carts move outside of a safe workspace, the system watchdog should halt the controller automatically.

7. If your specifications have not been met, you can finely tune the LQR weighting matrices on-the-fly using the
following command:

>> K = lqr(A,B, diag([Q(1,1),Q(1,1),Q(3,3),Q(4,4),Q(5,5),Q(6,6),Q(7,7)]),R)

8. To stop the experiment, click on the QUARC | Stop button butmake sure you catch the pendulum before it
swings down.
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(a) IP02 Cart Position (b) Spring Deflection

(c) Pendulum Angle (d) Voltage

Figure 3.5: Typical response when balancing the LFJC-PEN system

3.2.2 Analysis

An example of the closed-loop balance response is shown in Figure 3.6. You can generate this using the plot
command after running the q lfjc pen ip02 QUARC controller.

Due to the friction in the system, the IP02 servo oscillates back-and-forth approximately ±20 mm to balance the
pendulum. The pendulum angle does not exceed 1.5 degrees when balanced, and the deflection of the spring does
not exceed ±10 mm. Because of the integrator, the IP02 cart eventually returns to the initial 0 mm setpoint.
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Figure 3.6: LFJC-PEN balance control response
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4 SYSTEM REQUIREMENTS
Required Software

• Microsoft Visual Studio (MS VS)

• Matlabr with Simulinkr, Real-Time Workshop, and the Control System Toolbox

• QUARCr

See the QUARCrsoftware compatibility chart in [4] to see what versions of MS VS and Matlab are compatible with
your version of QUARC and for what OS.

Required Hardware

• Data acquisition (DAQ) device with 3x encoder inputs and that is compatible with QUARCr. This includes
Quanser DAQ boards such as Q8-USB, QPID, and QPIDe and some National Instruments DAQ devices. For
a full listing of compliant DAQ cards, see Reference [1].

• Quanser IP02 linear servo.

• Quanser LFJC-PEN-E (attached to the IP02).

• Quanser VoltPAQ-X1 power amplifier, or equivalent.

Before Starting Lab

Before you begin this laboratory make sure:

• QUARCris installed on your PC, as described in [3].

• DAQ device has been successfully tested (e.g., using the test software in the Quick Start Guide or the QUARC
Analog Loopback Demo).

• LFJC-PEN-E and amplifier are connected to your DAQ board as described its User Manual [6].
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4.1 Overview of Files

File Name Description
LFJC-PEN-E User Manual.pdf This manual describes the hardware of the LFJC-PEN

system and explains how to setup and wire the system
for the experiments.

LFJC-PEN-E Laboratory Guide.pdf This document demonstrates how to obtain the linear
state-space model of the system, simulate the closed-loop
system, and implement controllers on the LFJC-PEN plant
using QUARCr.

setup ip02 lfjc pen.m The main Matlab script that sets the IP02 and LFJC-PEN
motor, sensor, and configuration-dependent parameters.
Run this file only to setup the laboratory.

config ip02.m Returns the configuration-based IP02 model, sensor, and
motor specifications.

config lfjc.m Returns the LFJC-PEN model parameters.
config sp.m Returns the pendulum model parameters.
s lfjc pen.mdl Simulink file that simulates the closed-loop control of a

LFJC-PEN-E system using state-feedback control.
q lfjc pen.mdl Simulink file that implements the state-feedback control on

the LFJC-PEN-E system using QUARCr.
LFJC-PEN-E.mws Maple worksheet used to develop the model for the LFJC-

PEN experiment. Waterloo Maple 9, or a later release, is
required to open, modify, and execute this file.

LFJC-PEN-E.html HTML presentation of the Maple Worksheet. It allows
users to view the content of the Maple file without hav-
ing Maple 9 installed. No modifications to the equations
can be performed when in this format.

Table 4.1: Files supplied with the LFJC-PEN

4.2 Setup for Simulation

Before beginning the in-lab procedure outlined in Section 3.1, the s lfjc pen Simulink diagram and the setup ip02 lfjc pen.m
script must be configured.

Follow these steps:

1. Load the Matlab software.

2. Browse through theCurrent Directory window inMatlab and find the folder that contains the file setup ip02 lfjc pen.m.

3. Open the setup ip02 lfjc pen.m script.

4. Configure setup ip02 lfjc pen script: When used with the LFJC-PEN, the IP02 has the additional weight,
the LFJC-PEN has two weights, and the long pendulum is used. Make sure the script is setup to match this
setup:

• IP02 WEIGHT TYPE to 'WEIGHT'
• LFJC WEIGHT TYPE to 'TWO WEIGHT';
• PEND TYPE to 'LONG 24IN';
• K AMP to 1 (unless your amplifier gain is different)
• AMP TYPE to your amplifier type (e.g., VoltPAQ).
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• Ensure other parameters such as VMAX DAC match your system configuration.

5. Run setup ip02 lfjc pen.m to setup the Matlab workspace.

6. Open the s lfjc pen.mdl Simulink diagram, shown in Figure 3.1.

4.3 Setup for Running on LFJC-PEN

Before performing the in-lab exercises in Section 3.2, the s lfjc pen Simulink diagram and the setup ip02 lfjc pen.m
script must be configured.

Follow these steps to get the system ready for this lab:

1. Setup the IP02 with the LFJC-PEN module as detailed in the LFJC-PEN User Manual [6].

2. Make sure that the pendulum is stationary in the downward (gantry) position, and the system is in the
centre of the track.

3. Configure and run setup ip02 lfjc pen.m as explained in Section 4.2.

4. Open the q lfjc pen.mdl Simulink diagram, shown in Figure 3.4.

5. Configure DAQ: Ensure the HIL Initialize block in the IP02 and LFJC-PEN-E subsystem is configured for the
DAQ device that is installed in your system. See Reference [1] for more information on configuring the HIL
Initialize block.
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