@)

QUANSER

STUDENT WORKBOOK

Omni Bundle Robotics Experiment

Developed by:

Jacob Apkarian, Ph.D., Quanser
Paul Karam, B.A.Sc,. Quanser
Derry Crymble, M.A.Sc., Quanser
Amin Abdossalami, M.A.Sc., Quanser
Roopa Samra, M.A.Sc., Quanser

Omni Bundle is powered by:

MATLAB
SIMULINK

CAPTIVATE. MOTIVATE. GRADUATE.




© 2012 Quanser Inc., All rights reserved.

Quanser Inc.

119 Spy Court
Markham, Ontario

L3R 5H6

Canada
info@quanser.com
Phone: 1-905-940-3575
Fax: 1-905-940-3576

Printed in Markham, Ontario.

For more information on the solutions Quanser Inc. offers, please visit the web site at:
http://www.quanser.com

This document and the software described in it are provided subject to a license agreement. Neither the software nor this document may be
used or copied except as specified under the terms of that license agreement. All rights are reserved and no part may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of Quanser Inc.



http://www.quanser.com

CONTENTS

1 Introduction
1.1 Omni
1.1.1 Joints
Custom Configuration
Physical Properties
Positions

— o —
EEGRENEN
rwio

2 Preface

3 Forward Kinematics

3.1 Pre-Laboratory Assignments
3.1.1 Standard D-H Parameters
3.1.2 MATLAB Functions
3.1.3 Laboratory Files to Submit

3.2 In-Laboratory Experiment
3.2.1 Reading Joint Angles
3.2.2 Implementing Forward Kinematics
3.2.3 Determining the Reachable Space of the Omni
3.2.4 Laboratory Files to Submit

4 Inverse Kinematics
4.1 Pre-Laboratory Assignments
4.1.1 Inverse Kinematics Equations
4.1.2 MATLAB Function Block
4.1.3 Laboratory Files to Submit
4.2 In-Laboratory Experiment
4.2.1 Implementing Inverse Kinematics

5 Position Control

5.1 Pre-Laboratory Assignments
5.1.1 PD Control: Transfer Function
5.1.2 Effect of PD Gains
5.1.3 Design for Specifications
5.1.4 Laboratory Files to Submit

5.2 In-Laboratory Experiment
5.2.1 Joint 1 Control and Effects of K
5.2.2 Joint 1 Velocity
5.2.3 Joint 3 Control and Effects of K;
5.2.4 Joint 3 PID Control
5.2.5 Joint 3 Velocity
5.2.6 Joint 2 Control and Effects of Gravitational Loading
5.2.7 Joint 2 PID Control
5.2.8 Joint 2 Velocity
5.2.9 Laboratory Files to Submit

6 Teach Pendant in

Joint Space

6.1  Pre-Laboratory Assignments
6.1.1 Laboratory Files to Submit

6.2 In-Laboratory Experiment
6.2.1 Teaching Points
6.2.2 Creating Trajectories
6.2.3 Controlling the Robot
6.2.4 Laboratory Files to Submit

S

W Oo0OoO~NNO®

10

1"
12
12
13
15
16
16
17
19
19

20
21
21
22
23
24
24

25
26
26
26
27
29
30
31
33
34
36
36
37
39
39
40

1
42
43
44
44
45
45
47

QUANSER



10

1"

12

Teach Pendant in

Task Space

7.1 Pre-Laboratory Assignments
7.1.1 Laboratory Files to Submit

7.2 In-Laboratory Experiment
7.2.1 Teaching Points
7.2.2 Creating Trajectories
7.2.3 Controlling the Robot
7.2.4 Laboratory Files to Submit

Jacobian
8.1 Pre-Lab Assignments
8.1.1 Derivation of the Jacobian
8.1.2 Laboratory Files to Submit
8.2 In-Laboratory Experiment
8.2.1 Linear and Angular Velocity of the End-effector
8.2.2 Laboratory Files to Submit

Force Rendering

9.1 In-Laboratory Experiment
9.1.1 Applying Forces in Task Space
9.1.2 Laboratory Files to Submit

Haptic Gravity Well
10.1 Pre-Laboratory Assignments
10.1.1 The Virtual Environment
10.1.2 Laboratory Files to Submit
10.2 In-Laboratory Experiment
10.2.1 Interfacing with the QUARC Visualization
10.2.2 Modeling Forces
10.2.3 Laboratory Files to Submit
10.3 Bonus
10.3.1 Laboratory Files to Submit

Haptic Wall
11.1 In-Laboratory Experiment

11.1.1 Modeling Forces

11.1.2 Laboratory Files to Submit
11.2 Bonus

11.2.1 Requirements

11.2.2 Hints

11.2.3 Model

11.2.4 Laboratory Files to Submit

Haptic Pong

12.1 Pre-Laboratory Assignments
12.1.1 Studying the Model

12.2 In-Laboratory Experiment
12.2.1 1D Model
12.2.2 Extending to 2D Model
12.2.3 Testing the Model
12.2.4 Laboratory Files to Submit

Denavit-Hartenberg

Convention
A.1 Introduction
A.2 Labeling

48
49
49
50
50
50
50
51

52
53
53
55
56
56
59

60
61
61
62

63
64
64
68
69
69
71
72
73
74

75
76
76
78
79
79
79
80
80

81
82
82
85
85
85
87
88

89
89
89




A.2.1 How to Orient the Frames? 89
A.2.2 Terminology 90
A.3 D-H Convention 90
A.4 Example: A planar Elbow 91
o u@{ OMNI BUNDLE Workbook - Student Version v1.0

S ER



1 INTRODUCTION

The purpose of this curriculum is to teach senior undergraduate students various aspects of robotics and haptics.
Students will be exposed to concepts such as forward and inverse kinematic modeling of the robot, control design,
trajectory planning, and force rendering. The later exercises will take these concepts and apply them to create
haptics demonstrations. The robot used in all of the experiments will be the 3D Systems Geomagic Touch (formerly
Sensable Technologies PHANTOM® Omni), shown in Figure 1.1, henceforth referred to as the Omni.

Figure 1.1: Omni Bundle

This curriculum is designed to integrate aspects of both robotics and controls to demonstrate how they can be used
to create haptics applications.

All of the exercises use Matlab®and QUARC®. Each exercise shows how the QUARC®models should look when
the experiment is finished. Students are encouraged to use these figures as a guide.

Topics Covered

» Forward kinematics

* Inverse kinematics

* Position control

 Trajectory generation

+ Jacobian and force rendering

+ Haptic force generation

OMNIBUNDLE Workbook - Student Version |GGG



1.1 Omni

1.1.1 Jdoints

The Omni is a robot with six revolute joints. However, only three of the joints are actuated. The three actuated joints
are Ji1, Jo and Js shown in Figure 1.2. The non-actuated joints are the three wrist joints, J4, J5 and Jg, shown in
Figure 1.3. The end-effector, sometimes referred to as the tool position, is the tip of the stylus shown in Figure 1.3.

Figure 1.2: The three actuated joints on the Omni’

End-
effector

Figure 1.3: Non-actuated joints and the end-effector"

1Sensable Phantom Omni shown, but joint configuration is consistent with the Geomagic Touch.

()
< '2 OMNI BUNDLE Workbook - Student Version v1.0
QUANSER



1.1.2 Custom Configuration

In many exercises the stylus of the Omni is fixed to Link Ly, as shown in Figure 1.4. In this position joints J4, J; and
Je remain fixed. This is to enable students to perform kinematic analysis assuming only the first three joints exist.

Figure 1.4: Custom configuration of the stylus

1.1.3 Physical Properties

The link lengths of the Omni are provided in Table 1.1.

Link | Length (m)
Ly 0.132
L, 0.132

Table 1.1: Physical Parameters

1.1.4 Positions

Various exercises throughout the curriculum require the Omni to be positioned at predetermined points on the base-
board. These positions are shown in Figure 1.5.

OMNIBUNDLE Workbook - Student Version |GG



2 mgrdlt;{/.ﬁsl\elc?_lsaﬁ NN BLINDLE

Figure 1.5: Omni baseboard positions

S

QUANSER



2 PREFACE

The laboratory sections in this manual is generally organized into two sections.

Pre-Laboratory Assignment section is not meant to be a comprehensive list of questions to examine understanding of
the entire background material. Rather, it provides targeted questions or programming assignments for preliminary
calculations that need to be done prior to the lab experiments. All or some of the questions in the Pre-Lab section
can be assigned to the students as homework. One possibility is to assign them as a homework one week prior to
the actual lab session and ask the students to bring their assignment to the lab session.

In-Laboratory Experiment section provides step-by-step instructions to conduct the lab experiments and to record
the collected data.




S FORWARD KINEMATICS

The objective of this laboratory is to develop a forward kinematics analysis of the Omni. The purpose of this analysis
is to determine the position and orientation of the end-effector given the joint positions. At the end of this laboratory,
you will have created a QUARC®model that will read the joint positions in real time and output the position and
orientation of the end-effector.

Topics Covered

» Performing a forward kinematic analysis using the standard Denavit-Hartenberg (D-H) representation.

* Creating a model using QUARC and Simulink blocks to read the joint positions of the Omni.

Creating a MATLAB function block to implement forward kinematic analysis into the model.

» Determining the reachable space of the device in task space and joint space.

S

QUANSER



3.1 Pre-Laboratory Assignments

3.1.1 Standard D-H Parameters

Question 3.1

Use the coordinate frames given in Figure 3.1 to derive the standard D-H parameters. For an overview
of the standard D-H parameters, refer to Section A. The global frame is frame 0 and the end frame is
frame 3.

Note:

* The position shown in Figure 3.1 is not achievable by the robot. In this position, all joint angles are zero. To
help visualize the orientation, the position of each joint shown in Figure 3.2 is given in Table 3.1. Notice that in
Figure 3.2 the workspace has been removed as the position shown is not achievable otherwise.

» Frame 3 is not the end-effector frame. Later on, you will be provided the position and orientation of the end-
effector frame with respect to frame 3.

X3
Z3
O3
L,
4]
41 Z3 23
92 K]
00,0, F—— %Xz
(0] l( 0,

Xo X1

L

Figure 3.1: Coordinate frames to get the D-H parameters




Figure 3.2: Specific joint orientations

Joint | Position (rad)
qQ 0
q2 0
a3 ™

Table 3.1: Figure 3.2 joint positions

O (rad) | d(m) | a(m) | « (rad)

Table 3.2: D-H parameters

3.1.2 MATLAB Functions

1. Write a MATLAB function called DH.m as follows:

* Inputs (see Section A for a description of the following):

theta: Angle measured in radians
d: Distance measured in meters
a: Length measured in meters
alpha: Twist measured in radians

* Outputs

h OMNI BUNDLE Workbook - Student Version
QUANSER

v1.0



— A: The homogeneous matrix
+ This function should accept a vector containing the above four inputs and output the homogeneous matrix
A based on those four quantities.

Question 3.2
Show how this homogeneous matrix is calculated from the parameters 6, d, a and «.

2. Write a MATLAB function called ForwardKinematics.m as follows:

* Inputs

— @g: A 1x3 vector that accepts the joint positions of .J;, J,, and Js as ¢1, ¢, and ¢3 in radians

— tool offset: A 4x4 matrix that accepts the transformation matrix of the end-effector. The transforma-
tion matrix specifies the rotation and translation of the end-effector with respect to frame 3

* Outputs

— pos: A 1x3 vector that outputs the position of the end-effector (x, y and z coordinates) in the global
frame in meters

— rot: A 3x3 rotation matrix of the end-effector with respect to the global coordinate frame

(a) Call DH.m three times with the parameters from Question 3.1 to get the homogeneous matrices, A4;, A
and As. Use Ly and L5 as given in Table 1.1.

(b) Use the homogeneous matrices to find the transformation
Tg = A1 X A2 X Ag

(c) Use the transformation matrix, 73, to transform the tool offset matrix (given with respect to frame 3 coor-
dinates) to global coordinates. Use the following tool offset matrix.

1 0 0 0
01 00
0010
00 01

(d) From this transformed matrix, extract the rotation matrix and the translation of the end-effector with respect
to the global frame. These will be your outputs rot and pos respectively.

Question 3.3
Call this function with the values of ¢ given in Table 3.7.




Joint Position (rad) Position (m) Rotation matrix
¢1=0.8 _
gz = —0.3

qs = 3.3

q1 = —092 -
42 = —0.25

q3 = 3.14

¢ = —0.65 -
g2 = —1.00

q3 = 3.78

q1 = 0.57 _
q2 = —1.7

qs = 2.8

3.1.3 Laboratory Files to Submit

The following files should be submitted for evaluation:

* DH.m

* ForwardKinematics.m

S

QUANS

Table 3.3: Forward Kinematics

ER




3.2 In-Laboratory Experiment

In this laboratory, you will implement your DH.m and the ForwardKinematics.m files in QUARC to implement a
model that reads the joint angles from the Omni and gives the position and rotation of the end-effector with respect
to the global frame. You will be given a QUARC block that continuously reads the encoder values from the Omni
and gives the joint angles in radians.

Note: Before beginning, ensure that the stylus of the Omni is securely fastened to link 2, as shown in Figure 1.4.

3.2.1 Reading Joint Angles

To begin the forward kinematics analysis, you first need to read the position of each of the first three joints of the
Omni. These are joints ¢1, g2 and g¢3.

1. In MATLAB, open the Forward Kinematics Simulink model:
..\Student Lab Files\02 Forward Kinematics\ Forward_Kinematics.mdl

2. The Forward Kinematics model is preconfigured to read the Omni joint angles, as shown in Figure 3.3

buttons
E—}jninttﬂque Phantom encoder values u+b

- Encods mm-lﬂﬁﬂ

¥

Graund Encoder Offsets Scope
status Encoders to Joints g1, g2, g2
Phantom
(Diefault PHANToM)
o
o
| D'/ pelEncoders ol ool offset
.,/-’" getToolCffet Terminator
Tool Offset

Figure 3.3: Forward Kinematics model

3. Build the simulation by going to the QUARC menu, and clicking on Build. When the MATLAB Command
Window shows that the model has been downloaded to the target, run the simulation by opening the QUARC
menu and clicking on Start.

4. Open the Scope. Move around the end-effector of the Omni. The value of joint angles (in radians) will be
shown on the scope.

Question 3.4

Try to move one joint at a time in the positive direction as defined by the D-H frames earlier. Does the
corresponding signal on the scope also move in the positive direction? Record the relative direction
(+/-) of the joints compared to the direction defined in the D-H frames.

Joint | Direction
q1
q2
q3

Table 3.4: Joint Directions




5. Insert a Gain block between the Encoders to Joints q1, g2, q3 block and the Scope. Enter the gains you
found in Question 3.4 as a 1x3 vector. The joint angle calculation should look as shown in Figure 3.4. Restart
your model. The joints should now move according to positive orientation defined by D-H frames.

N~ & ]
o
Encoder Offsets o Convert to Positive Rotation Scope
Encoders to Joints g1, g2, g3 Convention
Figure 3.4: Orient joint angles
Question 3.5

Place the end-effector on position 2 of the baseboard. According to the D-H parameters defined ear-
lier, the angles of the end-effector at this point should be given by the values in Table 3.5. Determine
the biases (if any) that should be added to each joint in order to get these values.

Joint | Angles (rad)
q1 0
q2 -0.3
qs 34

Table 3.5: Position 2 joint angles

Joint | Bias (rad)
q1
qz
43

Table 3.6: Joint biases

6. Insert a Bias block between the Gain block and the Scope. Enter the biases you found in Question 3.5 as a
1x3 vector. Your angle calculation should look as shown in Figure 3.5. Restart you model.

N el g
u]
Encoder Oifsets o Convert to Positive Rotation Joint Offsets Scope

Encoders to Joints g1, g2, g3 Convention

h 4

Figure 3.5: Joint orientations

7. Place the end-effector on position 2 of the baseboard. The positions read from the scope for each angle should
match the ones shown in Table 3.5. If your positions do not match, either your gain or offset blocks are incorrect
or your Omni is not calibrated.

3.2.2 Implementing Forward Kinematics

1. Create a MATLAB Function block to implement DH.m and ForwardKinematics.m:

(a) In your Simulink model, insert a MATLAB Function block.

w OMNI BUNDLE Workbook - Student Version v1.0




(b) Copy and paste the code from your ForwardKinematics.m file into this block.
(c) Directly underneath, copy and paste the code from your DH.m file.

. Attach a display to all of the outputs of this block.
. Attach input g to the output of the bias block. Attach a display to the input g.

. Attach the Tool Offset block to the fool offset input. Your complete model should resemble Figure 3.6.

Fhantom
(Dfault PHANTOM)

Figure 3.6: Forward kinematics model

. Build and run your model. As you move the end-effector of the Omni, the displays will show the values of the
corresponding signals.

Question 3.6
Move the end-effector to positions 2, 5, 6, and 7 on the board. Record the Cartesian positions and
rotations of the end-effector.

Joint Position (rad) Position (m) Rotation matrix
Position 2

Position 5

Position 6

Position 7

Table 3.7: Forward Kinematics




3.2.3 Determining the Reachable Space of the Omni

In many applications, it is important to know the reachable space of the robot to ensure that the robot is not assigned
any tasks that are outside of its reach. In this section, you will experimentally determine the workspace of the robot
in both task space and joint space.

1. Run Forward_Kinematics.mdl

2. Position the end-effector at its maximum and minimum x-coordinates in the global frame. Observe the position
given by the output signal, pos. This gives the reachable space of the robot in the x-direction.

Question 3.7
Record the maximum and minimum x-axis positions. Repeat the process to determine the reachable
space in the y and z directions.

Joint | Minimum (m) | Maximum (m)
X

y
z

Table 3.8: Reachability in task space

3. Now determine the reachable space in joint space. Move each joint to its maximum and minimum positions
and read the signal values from the input signal q.

Question 3.8

Record the values for the three joints. Note that for joint 3, the reachable space is dependent on the
position of joint 2. This is due to the physical limitations provided by the form factor of the device.
For joint 3, record the minimum and maximum positions when q, is approximately -1.78 rad.

Joint Minimum (rad) | Maximum (rad)
94

92
g; (9, =~ -1.82 rad)

Table 3.9: Reachability in joint space

3.2.4 Laboratory Files to Submit

The following files should be submitted for evaluation:

* ForwardKinematics.mdl

S

QUANSER



4 INVERSE KINEMATICS

The objective of this laboratory is to develop an inverse kinematics analysis of the Omni. The purpose of the analysis
is to determine the position of each joint given the position and orientation of the end-effector. In general, unlike the
forward kinematics problem, the inverse kinematics problem may not always have a solution and when a solution
exists it may not be unique.

Topics Covered

» Developing the inverse kinematics equations using a geometric approach

* Providing conditions for the equations such that in the reachable space of the Omni, a unique solution is always
achieved.

OMNI BUNDLE Workbook - Student Version



4.1 Pre-Laboratory Assignments

4.1.1

1. You will use Figure 4.1 to geometrically derive the inverse kinematics equations. Notice that this figure does
not show the end-effector. In other words, the inverse kinematics analysis will be performed by assuming that
you have the position of frame 3 in global coordinates and based on it you want to find the position of each

Inverse Kinematics Equations

joint. Frame 3 is indicated by point F3 on the diagram.

Note:
plane.

S

In Figure 4.1, triangle -zdk is in the vertical (x-z) plane, and triangle YXd is in the horizontal (x-y)

X
o 7
\\ ~ - gql //
\ ~
@I TNy d 1Y
AN V qZ \\/\ //
AN ~ .
\ ~
NEhR
N2
N
R :
N2
KN > |
N |
\ | -Z
AN
N |
N\ |
h I
\\ |
\ |
N
\G) Fs
-Zo W
Figure 4.1: Geometry to derive inverse kinematics
Question 4.1

Using geometry, derive equations for the joint angles ¢, ¢» and ¢3 in terms of the Cartesian position
(x,y,z) of frame 3 with respect to the frame 0. Note that frame 3 is not the end-effector frame. Refer

to Section 3.1, to see the location of frame 3.
Use the following tips:

(a) Ensure that the equation for each joint will give a unique solution that lies in the reachable joint
space of the device. Use the reachable joint space of the robot you determined in Section 3.2.3.
If necessary, use "if conditions" to limit the solutions in the reachable joint space.

(b) Use the reachable joint space of each link to determine the quadrant(s) that each joint operates
in. Ensure that your inverse kinematic equations provide solutions in the respective quadrant(s).

(c) Use the Sine Law and the Cosine Law to find ¢» and ¢s. ¢» is positive (counter-clockwise) when

z < 0 and negative otherwise. Use this to determine the sign of ¢..
(d) Due to physical limitations of the device, ¢35 is always positive.

QUANSER



2. Note that in general, we are not given the position of frame 3. Rather we are given the position of the end-
effector (in global coordinates). However, if we know the position of the end-effector with respect to frame 3,
the position of frame 3 (in global coordinates) is trivial to obtain.

Question 4.2

Given the tool offset matrix, write the steps needed to get the position of the frame 3 with respect to
the global frame. Remember that the end-effector frame is always aligned with frame 3. Also note
that the tool offset matrix is given with respect to frame 3, not the global frame.

4.1.2 MATLAB Function Block

1. Open a new Simulink model. Save this model as: PreLab_Inverse_Kinematics.mdl.
2. Create a new MATLAB function block called Inverse Kinematics as follows:

* Inputs
— pos: A 1x3 vector for the position of the end-effector with respect to the global frame in meters
— rot: A 3x3 matrix for the rotation of the end-effector with respect to the global frame
— tool offset: A 4x4 matrix for the position and rotation of the end-effector with respect to frame 3.
* Outputs

— g,: The position of joint 1 in radians.
— g,: The position of joint 2 in radians.
— g4: The position of joint 3 in radians.

* Use L; and L, given in Table 1.1.
» Implement your process from Section 4.1.1 to get the position of each joint.

3. Your block should resemble Figure 4.2.

Inverse Kinematics

Figure 4.2: Inverse kinematics block

4. Copy and paste the forward kinematics model from Section 3.2.2.
5. Insert a Constant block and attach it to the input g of the forward kinematics block as shown in Figure 4.3.

6. Attach your inverse kinematics block to the output of the forward kinematics block. Use an identity matrix for
tool_offset.

7. Attach displays as shown in Figure 4.3. The Mux indicated in Figure 4.3 is available in the Simulink - Signal
Routing library. It converts its inputs into a vector. Double click on the Mux to change the number of inputs
from two to three.

OMNI BUNDLE Workbook - Student Version



h 4

Input
Block

Joint Angles, Radians1

-

Constant

Forward Kinematics

oo ro
owroo

—
oo o
»ooo
—

Tool Offset

Tool Position, meters

Inverse Kinematics

Figure 4.3: Inverse kinematics model

Mux

EXX1

h 4

Joint Angles, Radians

8. As an input to the forward kinematics block, input the joint angles as shown in Table 4.1 (one row at a time).
Enter these values as a 1x3 vector in the Input block indicated in Figure 4.3.

9. Run your model. Check that the joint angles output from the inverse kinematics block match the input to the
forward kinematics block. In other words, both displays should output the same values.

Position | 6, (rad) | 6, (rad) | 85 (rad)
Position 1 0.8 -0.3 3.3
Position2 | -0.92 -0.25 3.14
Position 3 | -0.65 -1.00 3.78
Position 4 0.57 -1.7 2.8

Table 4.1: Inverse kinematics inputs

4.1.3 Laboratory Files to Submit

The following files should be submitted for evaluation:

* PreLab_Inverse_Kinematics.mdl

OMNI BUNDLE Workbook - Student Version
QUANSER

v1.0



4.2 In-Laboratory Experiment

4.2.1 Implementing Inverse Kinematics

1. Copy and paste Forward_Kinematics.mdl from Section 3.2.2 into a new model called Inverse_Kinematics.mdl.
Attach your inverse kinematics MATLAB Function block from Section 4.1.2 to the forward kinematics block.
Your model should resemble Figure 4.4.

5 [ — [

Encoder Offsets

Convert to Positive Rotation  Joint Offsets
Canvention

Encoders to Joints q1. 92, 93

Phantom
(Dataul PHANToM)

4 oL
geiToolOfset

Tool Offset

daint Angles, radians1

Figure 4.4: Inverse kinematics and forward kinematics

2. Check that the Simulation mode is set to External.

3. Build and run the model.

Question 4.3
Move the robot to positions 1, 3, 7, and 9 on the board and measure the joint angles and actual
positions.

Position Joint Angles (rad) End-effector Position (m)
Position 2
Position 5
Position 6
Position 7

Table 4.2: Inverse Kinematics Results

OMNI BUNDLE Workbook - Student Version



S POSITION CONTROL

The objective of this laboratory is to design and study the performance of position controllers for each joint. Proportional-
Derivative controllers, or PD controllers, are commonly used for set-point tracking. The proportional and the deriva-
tive gains can be tuned appropriately to meet design specifications. You will design PD controllers for each joint to
meet specified design specifications. You will also explore the benefits of adding an integrator into the controller to
improve tracking. This type of control design is referred to as PID control.

Topics Covered

» Designing PD controllers for given specifications for each joint.

* Learning the effects of changing each gain on the overall performance.

Learning the effects of changing apparent inertia on the performance of a controller.

» Determining the maximum velocity of each joint at given configurations.

Studying performance using a PID controller.

S

QUANSER



5.1 Pre-Laboratory Assignments

5.1.1 PD Control: Transfer Function

In this section, you will design a PD controller for each joint such that the response will meet some design specifica-
tions. The closed-loop block diagram applicable to each joint is shown in Figure 5.1. K, and K, are the proportional
and derivative gains respectively. J and B are the joint inertia and friction respectively. 6, is the desired position
of the joint and 0,, is the actual position. This is an approximate model of the joints where many physical effects
are ignored to achieve a more simplified model. It should be noted that this particular implementation of PD control
applies the derivative gain to the feedback position, as opposed to the conventional approach where the derivative
gain is applied to the position error. This approach is often referred to as PV control, or set point gain, and is used
in this case to improve performance and better approximate a second-order system.

Oq Torque 1 1 Om
+ > »— >
(rad)” s Ko Nm) *|Js+B| | s | [rad)
—>» KyS
Figure 5.1: Closed-loop PD control block diagram
Question 5.1

; . Oy . -
Derive the closed-loop transfer function, 7. for the block diagram in Figure 5.1.
d

Question 5.2
The model of a second order transfer function is given by:

(. w2

m _ _n 51

Oa 82+ 2Cwps + w? (1)
Use this model and your solution to Question 5.1 above to derive equations for the proportional and
derivative gains, K, and K.

5.1.2 Effect of PD Gains

Question 5.3
A PD controller can be designed to achieve various specifications depending on the values of the gains
K, and K,. Qualitatively explain the effects of increasing K, and K, on the response of the system.

Question 5.4
Changing K, and K directly affects the bandwidth and the damping ratio of the system. Qualitatively
explain, how changing K, and K affects w,, and (.




5.1.3 Design for Specifications

For a second order system given by Equation 5.1, the percentage overshoot formula is given by:

¢
PO =100 V1—¢

The peak time, also known as the time to first peak ¢, is given by:

™

P wny/1— (2
The desired step input 6§, for joint 1 is given by:

™
04 = 15 rad (5.2)

The design specifications require that for a step input given by Equation 5.2, the following PO and ¢, specs are met:

PO < 25% (5.3)

t, <0.14s (5.4)

The joint inertia, J and friction B for each joint are shown in Table 5.1. Note that these joint parameters are position
dependent, meaning they are only valid at the given positions of the other two joints. For the purpose of this analysis,
these parameters are at the specified positions.

Joint Position J (Kg m2) | B (Nm s/rad)
Joint 1 (¢o = —7/4 rad, ¢3 = 7 rad 0.0031 0.0089
Joint 2 (32 = O rad, g3 = 7 rad 0.0022 0.0170
Joint 3 (g2 =0rad, g3 = —7w/4 rad 0.0009 0.0058

Table 5.1: Joint parameters

Question 5.5
Determine the parameters K, and K for a Joint 1 controller so that the specifications given in Equation
5.3 and Equation 5.4 are achieved.

Changing the positions of the links will change the inertia and friction as well. Consequently, for given specs on
overshoot and peak time, the response will be different. A demonstration of this will be included in the main laboratory.

1. In Simulink, create a model that is equivalent to the diagram shown in Figure 5.1 for joint 1. The parameters J
and B for joint 1 are given in Table 5.1. Provide a step input with a Final value of pi()/18 and Step time, Initial
value, and Sample time of 0.

2. Save your model as PreLab_Position_Control.mdl. Your model should resemble Figure 5.2.

Q

QUANSER



g N

1
I ={+:\ L g 1 Response
i 0.0021s+0.0089 s
Step Kp Transtes Fon Integrator
Jp| duidt o] -
Derivative Kd

Figure 5.2: PD control model

3. Open the Response scope. In the scope window, click on Parameters icon on the toolbar. The scope param-
eters window will open. Go to the History tab and check mark Save data to workspace. Set the Variable name
to step_data and the Format to Array as shown in Figure 5.3. This will store the data shown in the scope in
an array called scope_data on the MATLAB Workspace.

u '‘Response’ parameters [ — &J

General” HiStUFYH Graphics|

[] Limit data points to last: 2000

Save data to workspace

Variable name: step_data

Format: Array v

Cancel

o)

e (o]

Figure 5.3: Scope parameters window

4. Fill in the PD gains you derived in Question 5.5.

Question 5.6

Run your simulation for 1 second and record the response. You can set the simulation time by
changing the Simulation stop time to 1 in the Simulink toolbar. You can run this simulation in Normal
mode.

5. You should notice a variable called step_data in the workspace. The first column of this array is the time of
the simulation in seconds, the second column shows the reference signal (x/18 rad in this case) and the third
column shows the actual response of the system.

Question 5.7

Determine the overshoot and peak time of the actual response. To get these values, you can use the
following command in MATLAB. This command will give the properties of the step response such as
rise time, overshoot etc.

Stepinfo(step_data(:,3), step_data(:,1), pi/18)




Question 5.8
Calculate the percentage error in the actual results versus the given specifications.

5.1.4 Laboratory Files to Submit

The following files should be submitted for evaluation:

» PreLab_Position_Control.mdl

= OMNI BUNDLE Workbook - Student Version
QUANSER

v1.0



5.2 In-Laboratory Experiment

In this laboratory, you will be given a PID controller for the Omni with adjustable gains. Your task will be to study the
performance of the robot using different gains.

1. Open Position_Control.mdl and notice the PID Control block shown in Figure 5.4. The following is a de-
scription of its inputs and outputs:

* Inputs

— g_cmd: Accepts a 1x3 vector reference signal for each joint in radians.

— Kp: A 1x3 vector containing the proportional gains for each joint in Nm/rad. This input is modified
using slider gains to ensure that the values remain within a safe range. Saturation blocks within the
PID Control block will also prevent unsafe values for the proportional gains.

— Kd: A 1x3 vector containing the derivative gains for each joint in Nms/rad. Similar safety features to
those specified for the proportional gain are also implemented to prevent unsafe derivative gains.

— Ki: A 1x3 vector containing the integral gains for each joint in Nm/s. Similar safety features to those
specified for the proportional gain are also implemented to prevent unsafe integral gains.

* Outputs

— Kp_out: A 1x3 vector that outputs the actual proportional gains being used for each joint in Nm/rad.
This output equals the input Kp if the upper and lower thresholds are not exceeded. Otherwise, the
output is saturated to either the upper or the lower threshold value.

— Kd_out: A 1x3 vector that outputs the actual derivative gains being used for each joint in Nms/rad.
This output equals the input Kd if the upper and lower thresholds are not exceeded. Otherwise, the
output is saturated to either the upper or the lower threshold value.

— Ki_out: A 1x3 vector that outputs the actual integral gains being used for each joint in Nm/s. This
output equals the input Ki if the upper and lower thresholds are not exceeded. Otherwise, the output
is saturated to either the upper or the lower threshold value.

— q_start: A 1x3 vector that outputs the initial starting position of each joint in radians.

— @g: A 1x3 vector that outputs the actual position of each joint in radians.




1
Kp g1 G1
Kp g2 G2
1
Kp g3 G2
1
Kd g1 G4
Kd g2 G5
1
Kd g3 G8
1 4@— FID Control
Ki g GT
3
Ki g2 =8
s
Ki g2 9

Figure 5.4: PID controller

5.2.1 Joint 1 Control and Effects of K,

1. Save your model as Position_Control_Joint1.mdl.

2. Create a square wave input for joint 1 of magnitude pi/18 about 0. Use a Signal Generator block with a Wave
form of type Square, Amplitude of pil18, Frequency of 0.5, and Units set to Hertz.

3. Apply a reference signal of -pi/4 to joint 2, and a reference of pi to joint 3.

Note: Do not apply a step size larger than pi/18. Larger step inputs could damage the device

4. Create the model as shown in Figure 5.5. The Goto and From blocks are used to connect signals and keep
the model clutter-free. In this case, the signal from the Signal Generator block is connected to one of the
inputs of the Mux at the output, q. Corresponding Goto and From blocks must have the same name.

The Demux block shown in Figure 5.5 is used to split a signal into its components. In this case, we want to
plot the actual position of joint 1 and the commanded position for joint 1 on the same plot.

OMNI BUNDLE Workbook - Student Version v1.0
QUANSER



I@

Signal
Generator

Kp_out

| 1 |—>|1.79 I— Kd_out

Ki_out

A4
—
Y

Response

| .1 |—>| 0 — PID Control fa_ema)
|7>|— From

Figure 5.5: Joint 1 position control model

. Keep the default value of the gains K, K; and K; (blocks G1, G4 and G7) at 1.79 Nm/rad, 0.03 Nms/rad and
0 Nm/s respectively.

. Before running this model, place the end-effector of the Omni on position 2 of the baseboard.

. Set the Simulation mode to External in the Simulink toolbar.

Question 5.9
Build and run your model for 5 seconds and record your results.

. Decrease the proportional gain by changing the value of the block G1 to 0.8 Nm/rad.
. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.10
Re-run your model and record the step response.

Question 5.11
Explain how decreasing K, affected the response.

OMNIBUNDLE Workbook - Student Version



5.2.2 Joint 1 Velocity

In this section, you will determine the maximum velocity that joint 1 can travel with given a step size of 7/18 rad and
K,, K4 and K; equal to 1.79 Nm/rad, 0.03 Nms/rad and 0 Nm/s respectively.

1. Set the value of block G1 back to 1.79 Nm/rad.

2. From QUARC Targets | Continuous library, drag and drop the Second-Order Low-Pass Filter block into the
model. This block differentiates a signal while filtering out the noise due to differentiation. The block is shown
in Figure 5.6. Set the cut-off frequency parameter to 200 Hz and the Damping ratio to 1. The input x is the
signal to be differentiated. In this case it is the actual position of joint 1 taken from the output g of the PID
Control block. The output yd will be the differentiated signal. In this case, it would be the velocity of joint 1.

Second-Order
Low-FPass Filter
vd B

Second-Crder
Low-Pass Filter

Figure 5.6: Second-order low-pass filter

3. Your model should resemble Figure 5.7

S

QUANSER



oooo
o

Signal

Generstor

Kp_out

Kd_out

Ki_out

| 1 |—|>| 0o b— PID Contral fla_cma]

From

Figure 5.7: Joint 1 velocity measurement model
4. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.12
Build and run your model and record the velocity, yd.

Question 5.13

¥

—5]
5 Second-Order
Low-Pass Filter
B I
21
Second-Order Velocity

Low-Pass Filter

From your plot, record the magnitude of maximum velocity of joint 1 in both positive and negative

directions.

5.2.3 Joint 3 Control and Effects of K;

1. Start a new Simulink Model and insert the PID Control block from Position_Control.mdl. Save this model

as Position_Control_Joint3.mdl.

2. Create a square wave input for joint 3 of magnitude pi/18 about pi. Use a Signal Generator block with a Wave
form of type Square, Amplitude of pil18, Frequency of 0.5, and Units set to Hertz.

OMNIBUNDLE Workbook - Student Version



3. Apply a reference signal of -pi/4 to joint 2, and a reference of 0 to joint 1.

4. Use a Bias block with a bias of pi rad to shift the square wave up by 7 rad. Your model should resemble Figure

+

5
e
[A]

[9_cmd]
Goto
q1
il B — |
oo L bl Kp_out
Signal Bias
Generator
q3 :| |
Kd_out
Kp g1 G1
— — |
[oe |
Ki_out
Kp g3 G2 —
[ F——foee
o = ] |
start
v -
Kd g2 G5
Kd g2 G - = =
Response
[ o ] PID Conte aoma)
Ki g1 G7 From
7=
G
=9

5
o
(€=

Figure 5.8: Joint 3 position controller

5. Keep the default value of the gains K,,, K; and K; (blocks G3, G6 and G9) at 0.6 Nm/rad, 0.001 Nms/rad and
0 Nm/s respectively.

6. Place the end-effector of the Omni on position 2 of the baseboard.
7. Set the Simulation mode to External in the Simulink toolbar.

Question 5.14
Build and run your model for 5 seconds and record your results.

8. Increase the derivative gain by changing the value of the block G6 to 0.01 Nms/rad.
9. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.15
Re-run your model and record the step response.

S OMNI BUNDLE Workbook - Student Version v1.0
QUANSER



Question 5.16
Explain how increasing K affected the response.

5.2.4 Joint 3 PID Control

Notice the large steady state error in the results in Section 5.2.3. In this section, you will learn how a PID controller
can be used to decrease the steady state error in the response.

1. Open the Signal Generator block and change the Amplitude to -pi/18 rad and the Frequency to 0.1 Hertz.
This will allow us to see the step response behavior.

2. Open the slider gain block, G9. This gain is the integral gain corresponding to joint 3.
3. Change the value of this gain from 0 Nm/s to 0.5 Nm/s.
4. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.17
Run your model and record your results. You should notice a significant decrease in the steady state
error.

5. The time that it takes for the error to remain within 2% of its final value is called the settling time.

Question 5.18
Slowly change the gain in the G9 block to bring the settling time to approximately 1s. Record your
result and provide the value of the gain used.

5.2.5 Joint 3 Velocity

In this section you will determine the maximum velocity that joint 3 can travel with given a step size of 7/18 rad and
K, and K, equal to 0.6 Nm/rad and 0.001 Nms/rad respectively. The value of K; should be set 0 Nm/s.

1. Set the value of block G6 back to 0.001 Nm/rad. Set the Amplitude and Frequency of the Signal Generator
block back to pi/18 rad and 0.5 Hertz.

2. Modify the model to measure the velocity of joint 3 as outlined in Section 5.2.2. Your model should resemble
Figure 5.9.




Kp_out

oooo
o

Signsal
Generator

Kd_out

Ki_out

q_start

E/" '.='I :

O —
FID Contrel

Kig1 &7 [[a_eman

[ ] -

Ki g2 G8 ¥
Ll Second-Order

“ “ Low-Pass Filter

Kig2 e yd

Second-Order Velocity
Low-Pass Filter

Figure 5.9: Joint 3 velocity measurement model

3. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.19
Build and run your model and record the velocity, yd.

Question 5.20

From your plot, record the magnitude of maximum velocity of joint 3 in both positive and negative
directions.

5.2.6 Joint 2 Control and Effects of Gravitational Loading

1. Start a new Simulink Model and insert the PID Control block from Position_Control.mdl. Save this model
as Position_Control_Joint2.mdl.

2. Create a square wave input for joint 2 of magnitude pi/18 about 5*pi/12.
3. Apply a reference signal of 0 to joint 1, and a reference of 11*pi/9 to joint 3.

4. Use a Bias block with a bias of -5*pi/12 rad to shift the square wave down. Your model should resemble Figure
5.10.

N

Q

QUANSER

OMNI BUNDLE Workbook - Student Version v1.0



Kp_out
Kd_out
Ki_out
q_start
e (I
Response
n FID Cantral [a_emd]
Ki g1 GT From
+——3
Kig2 Ge
[0 ]
G

Figure 5.10: Joint 2 position controller

5. Keep the default value of the gains K, K; and K; (blocks G2, G5 and G8) at 1.46 Nm/rad, 0.045 Nms/rad
and 0 Nm/s respectively.

6. Place the end-effector of the Omni on position 2 of the baseboard.

7. Set the Simulation mode to External in the Simulink toolbar.

Question 5.21
Build and run your model for 5 seconds and record your results.

Question 5.22
Is there any difference between the steady-state error on the positive and negative sides. Explain
why or why not?

8. Next change the position of joints 2 and 3 to change the gravitational loading. In the Bias block, change the
value to -pi/4 rad. Set the reference signal for joint 3 to 3*pi/4 rad.

Question 5.23
Does this configuration increase or decrease the gravitational loading on joint 2?

OMNIBUNDLE Workbook - Student Version



9. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.24
Run the model and record your results.

Question 5.25
Explain how changing the gravitational loading changed the response.

5.2.7 Joint 2 PID Control

Notice the large steady state error in the results in Section 5.2.6. In this section, you will create a PID controller to
decrease the steady state error in the response.

1. Open the Signal Generator block and change the Amplitude to -pi/18 rad and the Frequency to 0.1 Hertz.
2. Open the slider gain block, G8. This gain is the integral gain corresponding to joint 2.

3. Change the value of this gain from 0 Nm/s to 0.5 Nm/s.

4. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.26

Run your model and record your results. You should notice a significant decrease in the steady state
error.

Question 5.27

Slowly change the gain in the G8 block to bring the settling time to approximately 2 s. Record your
result and provide the value of the gain used.

5.2.8 Joint 2 Velocity

In this section you will determine the maximum velocity that joint 2 can travel with given a step size of /18 rad and
K, and K, equal to 1.46 Nm/rad and 0.045 Nms/rad respectively. The value of K; should be set 0 Nm/s.

1. Set the Amplitude and Frequency of the Signal Generator block back to pi/18 rad and 0.5 Hertz.

2. Modify the model to measure the velocity of joint 2 as outlined in Section 5.2.2. Your model should resemble
Figure 5.11.

S

QUANSER



oooo
ol

Kp_out

Signal
Generator

| 1 |—>|1.79 |— Kd_out

Kp g1

Kp g2

Ki_out
Kp g3

start
| 1 |—>|0.045 -

He a3 =I pl ]
Responss
| 1 |—F| 0 FID Contrel [a_cmd]

Ki g1l G7 Frem

C - ——3

Ki g2 G& sf

[ o e

Ki g3 G9 e |— -
Second-Order Velocity

Low-Pass Filter

Figure 5.11: Joint 2 velocity measurement model

3. Place the end-effector of the Omni on position 2 of the baseboard.

Question 5.28
Build and run your model and record the velocity, yd.

Question 5.29
From your plot, record the magnitude of maximum velocity of joint 2 in both positive and negative
directions.

5.2.9 Laboratory Files to Submit
The following files should be submitted for evaluation:

 Position_Control_Joint1.mdI
 Position_Control_Joint2.md|

 Position_Control_Joint3.md|

OMNIBUNDLE Workbook - Student Version



&6 TEACH PENDANT IN
JOINT SPACE

The objective of this laboratory is to design a teach pendant using the Omni. In a teach pendant experiment, a set
of discrete points are taught to the robot. During playback motion, the robot traverses each of the taught points.
Programming the robot to do this is a three step process. It involves creating a routine to teach the points to the
robot, then creating a desired path between those points that the robot should follow and then finally creating a
routine to control the robot along that path.

Depending on the application of the robot, the trajectory between any two points could take any shape. Workspace
or task requirements might require the robot to move in straight lines or on a curved path. These trajectories could
be planned in either task space or joint space. In task space, it is the end-effector that moves in a specified trajectory.
In joint space, you create a trajectory for the joints instead.

Applications for this approach to trajectory planning include pick and place tasks or following a welding contour.

Topics Covered

+ Using an existing Simulink model to teach points to the robot.
 Creating linear trajectories between each point in joint space.

» Using an existing Simulink model to control each joint of the robot along the linear path.

S

QUANSER



6.1 Pre-Laboratory Assignments

In this section, you will write MATLAB functions to create linear trajectories between a set of points at a specified
slope. The trajectories will be created in joint space.

1. Write a MATLAB function called LinearTrajectory.m as follows:

* Inputs

— q_current. A 1x3 vector that accepts the joint positions at the starting point, in radians
— q_next: A 1x3 vector that accepts the position of each joint at the next point, in radians
— step_size: A 1x3 vector that stores the size of each step to go from q_current to q_next

* Outputs

— trajectory: An nx3 matrix that outputs the trajectory, in radians, between q_current and q_next where
n is the number of points traversed

(a) This function creates a linear trajectory between two points (q_current and q_next) according to the step
size.

(b) The trajectory ends only when q_next is reached. If g_next cannot be reached due to the step size, then
for the last step in the trajectory, ignore the step size and append the trajectory with q_next.

(c) Forexample, if q_current =[12 3], q_next =[3.6 3.8 5.9], and step_size = [0.5 0.3 0.5] then the following
trajectory is created:

1.5 23 35
2 26 4
25 29 45
3 32 5
3.5 35 5.5
3.6 3.8 59

Notice that between the last two points, the step size is no longer [0.5 0.3 0.5]. If this step size was used,
point q_next would have been overshot.

2. Write a MATLAB script called MakeLinearTrajectory_JointSpace.m as follows:

(a) We know from forward kinematics that for every combination of joint angles (q1, g2 and g3), there exists a
solution that gives the position of the end-effector in 3D space. To make this function, assume that you
have an m x 3 workspace variable that stores the position of each joint for m different points in space.
This variable will be called q.

(b) Create a 1x3 vector, q_dot in rad/s, to store the speed of each joint.
(c) Read the g matrix one row at a time and determine q_current and q_next.

(d) All joints must stop and start at the same time. To do this, you have to determine the joint that would take
the longest time to travel. This time is dependent on the distance the joint has to travel and the speed of
that joint.

Question 6.1

Assume that the joints [q1, g2, ¢g3] have to travel from their initial position of q_current = [0, 6
03], to q_next = [a1 as az]. If the joints travel at their maximum velocity, devise an algorithm to
determine the minimum time taken by each joint given that the maximum speed for each joint is
given by q_dot = [g1, g2, gs]-

Question 6.2

Using the time taken by each joint, find the maximum possible time to complete the trajectory
(i.e. the time taken by the slowest joint). Use it to devise an algorithm to determine the modified
speed (q_dot_modified) for all joints such that all joints finish their trajectory at the same time.




(e) Create a 1x3 vector, step_size, to store the size of step to be taken by each joint. Use step_size =
0.001*q_dot_modified. 0.001 is chosen because it will also be the sampling time of the Simulink models.

(f) Call LinearTrajectory.m with q_current, q_next and step_size.

(g) Repeat this process until trajectories between all points have been created, including the last point (point
m) and the first point (point 1). Store the completed trajectory in fraj q.

(h) Finally, concatenate the first row of the g matrix with traj_q to complete the trajectory.
(i) For example, if q_current = [1 2 3], q_next = [3.6 3.8 5.9], and step_size = [0.5 0.3 0.5] then traj qis:

(1 2 3]
1.5 2.3 3.5
2 26 4
2.5 29 45
3 32 5
3.5 35 55
3.6 3.8 59
3.1 35 54
26 32 49
21 29 44
1.6 26 3.9
1.1 2.3 34
1 2 3

3. Recall that in Section 5, you determined the maximum speed for each joint for a step input of /18 rad. In
this laboratory, we will create trajectories at approximately 25% of the maximum speed of each joint. This
proportion of the maximum speed is chosen to prevent wear and tear on the motors. This speed is:

daor = [1.20.91.7] (6.1)

Question 6.3
Test your function with the following g matrix, and maximum speed given in Equation 6.1. Plot each
column of traj_q.

6.1.1 Laboratory Files to Submit

The following files should be submitted for evaluation:

* LinearTrajectory.m

» MakeLinearTrajectory_JointSpace.m

S

QUANSER



6.2 In-Laboratory Experiment

In this laboratory, you will be provided with two Simulink models: Teach_Points.mdl and Teach_Pendant_Joint_Space.mdl.
Teach_Points.mdl will be used to teach different points to the Omni. Then you will use the functions created in the
pre-laboratory to make linear trajectories between those points. These trajectories will be used by the second
Simulink model to control the robot along that path.

6.2.1 Teaching Points

1. Open Teach_Points.mdl, shown in Figure 6.1.

E—b joint torque Phantom e
un

nnnnnnnnnn Display

Phantom
(Default PHANTOM)

Figure 6.1: Teach pendant model

(a) Section 1: Notice the blocks under section 1 are the same as those you created in Section 3.2.1. These
blocks convert the encoder values for each joint into position in radians.

(b) Section 2: The blocks under section 2 record the position of each joint whenever a button is pressed.

The model under the triggered subsystem, shown in Figure 6.2, executes at the rising edge of an event. In this
case the event is a button press. When a button on the Omni is pressed, this subsystem executes. It records
the position of each joint (in radians) in a workspace variable called g. Then it performs forward kinematics
analysis to find the position of the end-effector (in meters) and records this information in a workspace variable
called pos. Every time the button is pressed, a new row is created in each of these variables to store the
information. For instance if the button is pressed 4 times, matrices g and pos on the workspace will be both
4x 3. A flowchart of this process if shown in Figure 6.3.

Trigger

¥
o

| ) n To Workspace

pos
To Workspace1
{72 ) =
tool_offset

Forward Kinematics

Figure 6.2: Triggered subsystem

OMNI BUNDLE Workbook - Student Version



Wait for button
press

Button
pressed?

Yes
|
Joint
Reco_r d joint ——To workspace po§|t_|on
positions matricies q
and pos

Figure 6.3: Teach_Points.mdl flowchart

2. Check to ensure that the Simulation mode is set to External.
3. Build the model and run it.

4. While the model is still running, move the end-effector approximately 2 to 3 cm above position 4 on the base-
board and press a button once.

5. Repeat step 4 for positions 8 and 3 on the baseboard. Each time, be sure to hold the end-effector approximately
2 to 3 cm above the baseboard.

6. Stop the model. Now you should notice variables q and pos on the MATLAB workspace. Both of these should
be 3x3 matrices.

Question 6.4
Record the position values from the workspace.

6.2.2 Creating Trajectories

1. Open MakeLinearTrajectories_JointSpace.m from the pre-laboratory and run the file.

Question 6.5
Plot each column of traj _q.

6.2.3 Controlling the Robot

1. Open Teach_Pendant_Joint_Space.mdl, shown in Figure 6.4.

Q

QUANSER



[a_emd]
Goto
Trajectory Planning 3
Subsystem Tracing

PID Control

Forward Kinematics

Figure 6.4: Joint space trajectory follower model

(a) Section 1: The model under section 1 is the PID joint controller you used in Section 5.2. Its purpose is to
control each joint of the robot according to the trajectory you created.

(b) Section 2: The model under this section reads the trajectory from the workspace variable traj_q row by
row and sends it to the controller.

(c) Section 3: The model here is just outputting the actual positions of each joint and the desired positions.
These are plotted together on the scope called Tracking.

. Before running this model, place the end-effector of the Omni on position 4 of the baseboard.

. Ensure that the Simulation mode is set to External. Build and run this model for 10 seconds. Observe how
the end-effector traverses through each of the taught points.

Question 6.6
Record the Tracking scope which displays the commanded and actual position of each joint.

. This simulation also output a variable called pos_actual onto the MATLAB workspace. This columns 1, 2 and
3 of this matrix contain the path that the end-effector followed in X, y and z coordinates (in meters).

Question 6.7

Use the plot command in MATLAB to plot the top view of the actual position of the end-effector.
Exclude the beginning and ending 10% of the data. Also plot the actual points that were taught. The
commands are as follows: hold on

plot(pos_actual(1000:9000,2), pos_actual(1000:9000,1))

plot(pos(1,2),pos(1,1),'or', 'Linewidth', 2)

plot(pos(2,2),pos(2,1), " 'or', 'Linewidth', 2)

plot(pos(3,2),pos(3,1), 'or', 'Linewidth', 2)

hold off

Question 6.8
Does the end-effector move from point to point in one straight line? Explain

OMNIBUNDLE Workbook - Student Version



6.2.4 Laboratory Files to Submit

The following files should be submitted for evaluation:

* LinearTrajectory.m

» MakeLinearTrajectory_JointSpace.m

QUANSER

OMNI BUNDLE Workbook - Student Version

v1.0



7 TEACH PENDANT IN
TASK SPACE

In Section 6, you learned how to teach the Omni different points in space and then created linear trajectories between
those points. These trajectories were made in joint space. That is, the motion was applied to the joints. However, in
many applications it may be necessary that we design for the path of the end-effector and not the joints. Applications
of this design are more intuitive. If the robot is required to move along a welding contour, then it may be more intuitive
to provide a path for the end-effector and not the joints. In this laboratory, you will create linear trajectories for the
motion of the end-effector. As a result, you will observe that the end-effector moves in a linear motion for one point
to the next. This is also referred to as working in the task space.

Topics Covered

» Use an existing Simulink model to teach points to the robot.
* Create linear trajectories between each point in task space.
» Perform inverse kinematics analysis to translate the trajectories into joint space.

» Use an existing Simulink model to control each joint of the robot along the translated path.




7.1

Pre-Laboratory Assignments

In this section, you will write MATLAB functions to create linear trajectories between a set of points at a specified
slope. The trajectories will be created in task space.

1. This laboratory will use LinearTrajectory.m from Section 6.1

2. Make the following changes to MakeLinearTrajectory_JointSpace.m file from Section 6.1 (save the modified
file as MakeLinearTrajectory_TaskSpace.m):

(a) Instead of variables q, q_current, q_next, q_dot and traj_q, use variables pos, pos_current, pos_next,

pos_dot and traj_pos respectively.

(b) Recall that in Section 6.1, the speed we used for each joint was given by Equation 6.1. When the end-

effector moves in the x-y plane, the most work is done by joint 1 and joint 3. Joint 2 does not change
significantly. The maximum speed of the end-effector can be calculated using the following:

Vmax = r*q_dot

where r is the radius from a joint to the end-effector.

To move the end-effector in the x-direction, joint 3 is used the most. Joint 3 is a distance of 0.132 m
(length of link 2) from the end-effector. Joint 1 is used the most to move in the y-direction. Assuming that
the angle between links 1 and 2 is «/2 rad while the end-effector moves in the x-y plane, the distance
between joint 1 and the end-effector can be approximated by 0.132 m (length of link 1). Joint 2 is used to
move in the z-direction. Once again assuming orthogonal links, the radius from joint 2 to the end-effector
can be approximated by 0.132 m (length of link 1).

Therefore, pos_dot is given by:

pos_dot = 0.132%[1.7 1.2 0.9]
pos_dot = [0.2 0.15 0.12]

3. Test your function with the pos_dot specified above, and the following pos matrix:

0.011 0.048 0

0.04 0.007 —.0015
0.06 0.05 -0.07

Question 7.1

In a 3D plot, plot the 3 columns of traj_pos. Use the following plot3 command in MATLAB.
plot3(traj_pos(:,1),traj_pos(:,2),traj_pos(:,3))

view(-38,10)

You should see a triangle traced out between each of the three taught points. The view command
above orients the figure so that easy to see. The rotation about the negative y-axis is -38 in degrees,
and the elevation is 10 in degrees.

7.1.1 Laboratory Files to Submit

The following files should be submitted for evaluation:

* LinearTrajectory.m

» MakeLinearTrajectory_TaskSpace.m

S

QUANSER



7.2 In-Laboratory Experiment

In this laboratory, you will be provided with two Simulink models: Teach_Points.mdl and Teach_Pendant_Task_Space.mdl.
Teach_Points.mdl is the same model from Section 6.2. It will be used to teach different points to the Omni. Then

you will use the functions created in the pre-laboratory to make linear trajectories between those points in task space.

These trajectories will be used by the second Simulink model to control the robot along that path.

7.2.1 Teaching Points

1. Open Teach_Points.mdl

2. Check to ensure that the Simulation mode is set to External.
3. Build the model and run it.
4

. While the model is still running, move the end-effector approximately 2 to 3 cm above position 4 on the base-
board and press a button once.

5. Repeat step 4 for positions 8 and 3 on the baseboard. Each time, be sure to hold the end-effector approximately
2 to 3 cm above the baseboard.

6. Stop the model. Now you should notice variables g and pos on the MATLAB workspace. Both of these should
be 3x3 matrices.

Question 7.2
Record the position values from the workspace.

7.2.2 Creating Trajectories

1. Open MakeLinearTrajectories_TaskSpace.m from the pre-laboratory and run the file.

Question 7.3
Create a 3D plot of the resultant trajectory.

7.2.3 Controlling the Robot

1. Open Teach_Pendant_Task_Space.mdl, shown in Figure 7.1.




Figure 7.1: Task space trajectory follower model

(a) Section 1: The model under section 1 is the PID joint controller you used in Section 5.2. Its purpose is to
control each joint of the robot according to the trajectory you created.

(b) Section 2: The model under this section reads the trajectory from the workspace variable traj_pos row by
row and performs an inverse kinematics analysis on it to convert it to joint positions. These joint positions
are controlled by the PID controller.

2. Before running this model, place the end-effector of the Omni on position 4 of the baseboard.

3. Ensure that the Simulation mode is set to External. Build and run this model for 10 seconds. Observe how
the end-effector traverses through each of the taught points. This simulation will output a variable pos_actual
onto the MATLAB workspace. Columns 1, 2 and 3 of this matrix contain the actual position of the end-effector
in X, y and z coordinates respectively.

Question 7.4

Use the plot command in MATLAB to plot the top view of the actual position of the end-effector as
described in Question 6.7. Exclude the beginning and ending 10% of the data. Also plot the actual
points that were taught.

Question 7.5
Compare this plot with the one you obtained in Question 6.7.

7.2.94 Laboratory Files to Submit

The following files should be submitted for evaluation:

* LinearTrajectory.m

» MakeLinearTrajectory_TaskSpace.m

OMNI BUNDLE Workbook - Student Version v1.0
QUANSER



8 JACOBIAN

The objective of this laboratory is to derive the jacobian and use it to find the linear velocity and the angular velocity
of the end-effector. Given the joint velocities, one can use the jacobian to compute the linear and angular velocities
of the end-effector. The relationship between joint velocities and end-effector velocities is given by:

w

v .
HE 01
v is the linear velocity vector, w is the angular velocity vector, J is the jacobian and ¢ is a vector of joint velocities.
Topics Covered

* Derive the jacobian

» Use the relationship shown in Equation 8.1 to find linear and angular velocities of the end-effector.




8.1 Pre-Lab Assignments

8.1.1 Derivation of the Jacobian

The jacobian can be easily derived using the forward kinematics analysis you performed in Section 3.1. For an n-link
manipulator, the jacobian is given by:

J = [ Ja... ]

where the ith column corresponds to the i"" joint. For a revolute joint, the i™ column is given by:

J; = Zi—1 X (On - 01'71)
Zi—1

(8.2)

where z; is the unit vector corresponding to the ith frame and on is the vector from origin of frame o, to origin of frame

on (o, is the end-effector frame). Similarly o;_; is the vector from oy to 0;_1. All of these vectors must be expressed
in global coordinates.

Note: The vectors z;_; and o;_; are dependent on the position of the end-effector. Thus, the jacobian is also
position dependent.

1. Open your Simulink model Forward_Kinematics.mdl. Delete all of the displays and disconnect the Bias
block from the MATLAB Function block. Your model should look as shown in Figure 8.1. Save your model
as PreLab_Jacobian.mdl.

butions
@—pjumt torque Fhantom  encoder values 4@ » &
o
Ground Encoder Offsets o Convert to Positive Rotation  Joint Cffsets
siatus Encoders to Joints 91, a2, 2 Convention

Fhantom
{Default PHANTOM)

Forward Kinematics

4\ tool_offset
getToclOffset

NS

Tool Offset

Figure 8.1: Modified forward kinematics model

Question 8.1
From the transformation matrix 7;i, show how you can find the orientation of axis zg, 21 and z».

Answer 8.1
The orientation of each of the z; axes is given by the third column of the T¢ transformation matrix.

oo

Question 8.2
From the transformation matrix 7;;, show how you can find the position of o;.

Answer 8.2
The position of o; is given by the fourth column of the T{ transformation matrix.
oo

2. Modify the MATLAB Function block to calculate the jacobian as follows:

w OMNI BUNDLE Workbook - Student Version

v1.0
QUANSER




(a) Although the Omni has two obvious links, for the purposes of calculating this Jacobian, you have to
assume that it has a third link between joint 1 and joint 2. This link has zero length. Thus the jacobian will
be a 6 x3 matrix. Using Question 8.1 above, modify the MATLAB Function block to find the orientation of
axis zg, z1 and z».

(b) Using Question 8.2 above, modify the MATLAB Function block to find the position of oy, 0; and o,.

(c) The position of o,, is given by the output pos that you have already calculated. Now you have all the
information to calculate the jacobian.

(d) Apply Equation 8.2 to calculate the jacobian. Make this an output of the MATLAB Function block. Your
block should look as shown in Figure 8.2.

Forward Kinematics

Figure 8.2: Forward kinematics block with jacobian

(e) Attach a display to the output jac.

Question 8.3
Input the vectors shown in Table 8.1 to the input g one at a time and record the resultant jacobian
matrix. Your model should look as shown in Figure 8.3.

[0.58 -0.43 3.5]

Phantom|
(Default PHANTOM)

Encoders ok tool_off:
getToolCffset

Display

Figure 8.3: Modified model to calculate jacobian.

q (rad) Jacobian
[-1-1.3 3.4]

[0.56 -0.43 3.5]

Table 8.1: Sample joint positions to calculate the jacobian

OMNIBUNDLE Workbook - Student Version



8.1.2 Laboratory Files to Submit

The following files should be submitted for evaluation:

* PreLab_Jacobian.mdl

QUANSER

OMNI BUNDLE Workbook - Student Version

v1.0



8.2 In-Laboratory Experiment

8.2.1 Linear and Angular Velocity of the End-effector

1. Open PreLab_Jacobian.mdl you created in the pre-laboratory. Resave this model as Jacobian.mdl.

2. Delete the display on the output jac and reconnect the Bias block to the input q of the Forward kinematics
block. Your model should resemble Figure 8.4.

butions
E_.mmt torque Fhantom enmﬂavalussﬂ » &
= o
Greund Encoder Offsets :
slalus Encoders to Joints g1, g2, g3

Phantom
{Default PHANTGH)

Forward Kinematics 1

Encoders  off\ tool offsst
getToolOffset

Tool Offset

NS

Figure 8.4: Model to calculate the jacobian.

3. In this laboratory, you will be adding several additional blocks to this model. To keep the model simple, it is
better to take the existing model and make it into a subsystem before adding further blocks.

(a) Select all of the blocks in the model.

(b) While all the blocks are selected, right click on one of the blocks and click Create Subsystem. This
command will combine all the blocks into a subsystem and your model will look as shown in Figure 8.5.

Dt B
DwutZ B

Dwutd B

Subsystern

Figure 8.5: Subsystem

(c) Double click on this subsystem to view the model underneath. Notice the output ports Out1, Out2 and

Out3 attached to the outputs pos, rof, and jac respectively. Rename these output ports to match their
respective outputs.

(d) Attach another output port to the input g of the forward kinematics block and name this port g.

(e) Click on the Go to parent system button on the Simulink toolbar to return to the root model. The subsystem
should now resemble Figure 8.6.

Subsystem

Figure 8.6: Modified subsystem

(f) Rename the subsystem to Omni

OMNI BUNDLE Workbook - Student Version



4. From the QUARC Targets | Continuous library, drag and drop the Second-Order Low-Pass Filter block into
the model. We will use this block to differentiate the signals. Set the Cut-off frequency to 200 Hz, and the

Damping ratio equal to 1.

5. According to Equation 8.1, we need to differentiate g to get ¢. Multiply ¢ with J to get the linear and angular
velocity vectors.

6. Plot the output of this product on two different scopes. Your model should resemble Figure 8.7. To create three
inputs to the scope, open the scope, click on Parameters and change the Number of axes from 1 to 3.

rot

Second-Order

Cmni

Low-Pass Filter

¥

yd

Matrix
Multiply

.

Second-Order
Low-Pass Filter1

Figure 8.7: Model to get end-effector velocities

7. Set the Simulation mode to External in the Simulink toolbar.

Product

[ ]

Linear Velocity

[ ]

Angular Velocity

8. Build and run your model. Move the end-effector around and observe the linear velocities on the scope. The
output of the product block is ordered as follows:

Vg
Uy
Uz
w./L'
Wy
Wy

9. We can verify the linear velocities by differentiating the output pos of the Omni block. Given that this output
is the position of the end-effector, its derivative will give us the linear velocity of the end-effector. Modify your
model to resemble Figure 8.8.

S

QUANSER




)
¥

Second-COrder

Low-Pass Filter -
yd

Second-Order

rot Low-Pass Filter Linzar Velocity1

jac L

Matriz

Multiply Linear WVelocity
3] ]
2 el Second-Order FE——
-- Low-Pass Filter
yd Angular Velocity
Orrni

Second-Crder
Low-Pass Filter1

Figure 8.8: Verification of linear velocities

10. Build and run the model.

Question 8.4
Move the end-effector around and record the results from both linear velocity scopes. The velocities
on the scopes should match. Record the angular velocity response as well.

Answer 8.3
The measured linear velocities, and the linear velocities calculated using the Jacobian are shown in
Figure 8.9 and Figure 8.10. The angular velocities are shown in Figure 8.11.

-} Linear Velocity E]@@ ) Linear Velocity1 E|@@
gl LLrL ARR BARF ¥ GHE LPLL ABRRB B A & v

04 04
02 e ; . U SR 02

1| Y 8 0

o2b T cedd T PR T 02
04 : i i 04
1 y : 1
05! . : ; e o oSt -
0 PR __ : 0
B i i i 1
05 0s

Time offset: O

Figure 8.9: Linear velocity result scope 1 Figure 8.10: Linear velocity result scope 2




J [Angular Velocity g@@
el LL Lo dé& = N

4 45

Time offset 0

Figure 8.11: Angular velocity result
odoo

8.2.2 Laboratory Files to Submit

The following files should be submitted for evaluation:

» Jacobian.mdl

Q

QUANSER

(O~

OMNI BUNDLE Workbook - Student Version

v1.0



9 FORCE RENDERING

The objective of this laboratory is to use the jacobian from Section 8 to translate forces in the task space to torques
in joint space. This relationship is given by:

r=J'F (9.1)

7 is the torque vector, J is the jacobian, F' is the vector of forces in the task space.

Topics Covered

» Use the jacobian to translate task space forces into joint torques.

» Be able to feel the desired force output at the end-effector of the Omni.

OMNIBUNDLE Workbook - Student Version | CNNNENENGNGN



9.1 In-Laboratory Experiment

You will modify the model from Section 8 to calculate joint torques based on the force to be felt at the end-effector.

9.1.1 Applying Forces in Task Space

Open Jacobian.mdl from Section 8.2.1.
Copy only the Omni block into a new model and save this model as Force_Rendering.mdl.
Double click on the Omni block to look underneath.

Use the Math Function block in Simulink to transpose the jacobian.

o &~ N -

According to Equation 9.1, J7 is a 3x6 matrix and F' must be an array of six elements. However the task
space forces are only 3-dimensional. Create an input port for task space force (call it Task Force) and use a
Mux to concatenate it with a zero array of three elements representing dummy task space torques. Now the
force can be multiplied with the jacobian transpose to get torques. Your model should resemble Figure 9.1.

buttons

iointtorque  Phantom encoder values

status

Encoders to Joints g1, 42, g1

(2L

Phantom
{Default PHANToM)

Matrix
Multiply P

Product

Figure 9.1: Force rendering model

6. Recall thatin Section 3.2.1 we attached a gain block to the output of the Encoders to Joints q1, q2, q3 block
to orient the direction of rotation of each joint according to our D-H convention. Now we have to do the same
thing to convert it back to the convention used by the Omni block. Create a gain block with the gains [-1;-1;-1]
and attach it to the output of the product. Now you have the joint torques in the correct orientation.

7. Attach a unit delay to prevent an algebraic loop.

8. Connect the joint torque port on the Phantom block to the output of the Unit Delay block. Your model should
resemble Figure 9.2.

]::mt(nlque Phantom encoder values

status

Convertto Positive Rotation  Joint Offsets
Encoders to Joints 91, 42, g1 tion

Conventi

L]

Fhantom
Jefault PHANToM)

=)

Matrix
Multiply

| : s
| 11011 > - < ltorques)
| =

Convert to Pasitive Rotaticn

Figure 9.2: Complete force rendering model

w OMNI BUNDLE Workbook - Student Version v1.0

QUANSER




9. Go to the parent model. Notice the input node Task Force you created earlier. Attach a Constant input to this
node. Enter in the vector [1 0 0]. Your model should resemble Figure 9.3.

rot

[100] P Task Farce

Constant jac

Omni

Figure 9.3: Omni model with force input

10. Set the Simulation mode to External in the Simulink toolbar.
Note: Before running your model, hold the Omni end-effector in the middle of the workspace. Do not
let go of the end-effector while the model is running.

11. Run your model. You should feel the end-effector applying a force equal to 1 N against your hand in the
x-direction.

12. Stop the model.

13. Change the value of the Constant block to [0 1 0] N. This will apply force of 1 N in the y-direction. Make sure
to hold on to the end-effector before running the model.

14. Repeat to apply force of 1 N in the z-direction.

15. Increase the force in any direction to 2 N. You should now feel the Omni applying a larger force in the corre-
sponding direction.

Note: To prevent damage to the device, do not apply forces larger than 3 N in any direction.

9.1.2 Laboratory Files to Submit

The following files should be submitted for evaluation:

» Force_Rendering.md|




10 HAPTIC GRAVITY WELL

The objective of this laboratory is to design a haptic gravity well. A gravity well is a single point in 3D space. Itis
used to attract the haptic device towards the point. Generally the gravity well has a radius of influence in which force
feedback is applied to the device to pull it towards the point. Outside this radius, there is no force applied and the
device moves freely. This is a common way to find or snap on to points in 3D space. Inside the radius of influence,
the force that is applied to pull the device is given by F' = kx — bv, where k is the stiffness of the spring used to pull
the device, z is the vector from the device to the point, b is the damping coefficient, and v is the velocity. In this way,
when the device is outside the radius of influence, the force is zero and as soon as it enters the radius of influence,
it is pulled towards the point by the force given above.

This laboratory is two-fold: you will first design a virtual environment and then interact with it using your haptic device.
You will use the QUANSER Visualization Initialize block to design the graphics and the appropriate Simulink model
of your haptic device.

Topics Covered

 Creating a virtual environment for the gravity well.

 Creating a Simulink model of the gravity well.

S

QUANSER



10.1 Pre-Laboratory Assignments

10.1.1 The Virtual Environment

The virtual environment for this laboratory consists of two objects: The gravity well itself and the avatar. An avatar
is a virtual object that tracks the position input of the user; that is, it follows the end-effector position/orientation of
the haptic device. Here you will learn to use the QUARC Visualization Initialize block to create virtual environments.

10.1.1.1 The QUARC Visualization

The QUARC Visualization Initialize block is used to create 3D graphical environments. To get started, QUARC
includes a five part tutorial on Creating Your First Visualization to demonstrate some of the features and basic
utilization of the blocks. For the haptic gravity well, we will use existing images and primitives to build the virtual

environment as follows:
1. In the Simulink Library Browser, go to QUARC Targets | User Interface | Visualization and drag and drop
the Visualization Initialize block into a new model. Save this model as PreLab_Haptic_Gravity_Well.mdl.

2. Double-click on this block to open the Parameters window as shown in Figure 10.1. See below for a description
of each of the labeled sections.




P
- Source Block Parameters: Visualization Initialize =] =

Visualization Initialize
Setup your scene objects and properties of the display window.

Navigation

[ Go to other blocks of this visualization ]

Main Visualization reference:

Communications | Visualization-1

Meshes [Scene filename: Visualization\Gravity_Wells.xml 1)
Images [ Load... ] [ Save As... ] [ New ] [ Merge...
Oblect
— Viewer Parameters
Actors
Open viewer on simulation start
Mouse Close viewer on simulation stop
Keyboard ["] Enable menu
- Enable status bar
Environment

Statistics Display mode: window M)

Window width: 1024 | pixels

Window height: 768 | pixels

Window position: | centered "
Window left: | 0 | pixels
Window top: 0 pixels

Target frame rate: | 30 frames per second

ok ) [cmea ] (o ] [ coor |([Canmate ) 3

Figure 10.1: Parameters window of Visualization Initialize block

(a) Section 1: Browse to a scene file that defines the graphical world.
(b) Section 2: Add Meshes, Images, Objects, and Actors to the visual environment.
(c) Section 3: Animate the environment to preview the graphical objects.

10.1.1.2 The Avatar

First we will create a spherical avatar. The purpose of this avatar will be to follow the position of the end-effector of
the Omni on the screen.

1. In the Main parameters window, click Load and select the scene file Visualization | Gravity_Wells.xml. Click
Open.

2. Click on the Meshes button to open the Mesh parameter window shown in Figure 10.2.

<N

'2 OMNI BUNDLE Workbook - Student Version v1.0
QUANSER



3.

© N o a A

10.

Click on the Add button, and navigate to Visualization | Meshes | sphere.x3d. The sphere primitive is a three
dimensional model of a sphere created in Solidworks and rendered in 3ds Max. Leave the Resource identifier
field black and click Add.

n Source Block Parameters: Visualization Initialize

Vigualizaticn Initialize

Setup your scene objects and properties of the display window.

Nawigation

Go to other blocks of this visualization ]

Main mesh.skybox (Meshes\skybox.x3d -

Communications
Meshes
Images
Objects
Actors
Mouse
Keyboard
Environment

Statistics

| add || Edt || view || Remove |

[ OK ][ Cancel ][ Help ] Apphy

Figure 10.2: Mesh list in Visualization Parameters

Next we will add images to add texture to the mesh primitives.

Click on the Images button and click on the Add button.

Add the image Visualization | Images | yellow.png. This will be the texture of the avatar sphere.
Next add the texture for the gravity well located at Visualization | Images | moon_surface.png.

Navigate to the Objects parameter window. Objects bring together textures and meshes to create complete
3D visual elements.

Click Add, and select the Mesh Resource mesh.sphere and texture image.yellow. Specify the resource iden-
tifier object.avatar, and click Add.

Repeat Step 9 to create and a moon_surface textured sphere called object.well.

OMNIBUNDLE Workbook - Student Version [ NENEGNGNGNG



10.1.1.3 Actors

The last step to creating a visual environment is to create actors using the objects we added in Section 10.1.1.2.
The actors attribute 3D properties to the objects to specify their location and behaviour in space.

1. Navigate to the Actors parameter window. Notice that the location of the camera, the background "skybox",
and light source are already defined.

2. We will begin by creating the avatar actor. Click on Add, and select the object resource object.avatar.
3. Leave the parent actor as None, and the position and orientation as [0 0 0].

4. The locations and sizes of actors in the visual environment should be scaled by x 10 to make changes in their
location more obvious. Specify the scale property of the avatar as [0.2 0.2 0.2] to create a sphere 0.02 m in
diameter.

5. Make sure to set the Render priority to 1 so that the avatar is always visible when inside a gravity well. Click
OK.

6. Repeat Steps 2-5 to create the gravity well actor located at [-1.5 0 0], with a scale of [0.6 0.6 0.6], and render
priority of 0.

7. Click Apply to complete the scene.

8. Click on the Animate button to preview the environment. The scene should resemble Figure 10.3. Click OK to
close the Visualization Initialize properties window.

\0 QUARC 3D Viewer [E=S

File Interface View Window Help

Receiving data stream Model Controlled Camera FPS: 30

Figure 10.3: Virtual world animation

o

QUANSER



9. Add a Visualization Set Variables block to the model from QUARC Targets | User Interface | Visualization
in the Simulink Library Browser. This block will allow you to modify the parameters of the actors in the scene.

10. Open the Visualization Set Variables properties window, and click on the button.

11. Navigate to the actor.well variable, select the Position property and click on the button to add it to the
list of selected variables.

12. Repeat Setp 11 to add the position variable for the avatar. Click Apply and then OK.
10.1.2 Laboratory Files to Submit
The following files should be submitted for evaluation:

* GravityWell.xml
* PreLab_Haptic_Gravity Well.mdI




10.2 In-Laboratory Experiment

In this laboratory, you will interface the Omni with the virtual world you created in the pre-laboratory.

10.2.1 Interfacing with the QUARC Visualization

1. Open Haptic_Gravity_Well.mdl. This model contains an OMNI block that is similar to the block you built in
Section 9.1, but models the Omni using all 6 joints.

2. Ensure that the stylus is detached from link 2 by removing the stylus lock. In this laboratory, it will be easier to
handle the end-effector in this configuration.

3. From your PreLab_Haptic_Gravity_Well.mdl, drag and drop the Visualization Initialize and Visualization
Set Variables blocks into this new model. Your model should look resemble Figure 10.4.

T

“ O i

rot ——m—]
Visualizatiocn Initialize
Visualization-1 jac —m—
Task Force
s—»3
Paosition

Lo ] a1, o2, 93 —s{—]
Puositicn a4, o5, of —s{—]

Visualization Set Variables Omini
(Visuslzstion-1)

Figure 10.4: Full Omni block including joints 4, 5 and 6

4. We want the position of the end-effector to be mirrored by the position of the avatar on the screen. The
position of the end-effector is given by the output pos of the OMNI block, and the position of the avatar can be
specified using the Visualization Set Variables block. However, we cannot connect them directly because the
coordinate frame used by the Omni is not the same as the coordinate frame used by the QUARC Visualization.

5. Recall from Section 3.1.1, the global coordinate frame defined by our D-H parameters is given by Figure 10.5.
The coordinate frame used by the QUARC Visualization is shown in Figure 10.6.

S

QUANSER



X Y

Figure 10.5: Omni coordinate frame Figure 10.6: Visualization coordinate frame

6. Make a subsystem block that converts the position output of the Omni in the coordinate frame shown in Figure
10.5, to the position of the avatar in the coordinate frame shown in Figure 10.6. To do this, simply add a gain
block to reverse the appropriate axes and scale the output to the visualization by a factor of x10. Call this
block Coordinate Transform. Your model should resemble Figure 10.7.

T
Visualization Initialize
Visuslzation-1

Rasition

pos | Oruni ‘Visuslization l—. Position

Coordinate Transform

Visualization Set Variables
{Visuslzation-1)

Task Force

bbb

Omni

Figure 10.7: Avatar coordinate transformation

7. Recall thatin Section 3.2.3, you determined the workspace of the Omni. It is important to ensure that we place
the gravity well within a reachable range of the end-effector in all directions. Remember that the radius of the
gravity well is 0.03 m. So if we place the gravity well at [0.15 0 0], then it will span the x direction from 0.12 m
to 0.18 m and in the y and z directions from -0.03 m to 0.03 m. These are well within the reachable space of
the device.

8. Setthe position input of the Visualization Set Variable block for the wells avatar to [0.15 0 0]. Once again note
that this is the position given in the coordinate frame of the Omni not the QUARC Visualization block. Use
the Coordinate Transform block to transform this input to the Visualization coordinates before using them.

9. Now the right hand side of the model is complete. Set the Task Force input to [0 0 0]. Your model should now
resemble Figure 10.8.




T
\0 [.15 0 0} Jo={ O Visuslzation '—b

‘Well Positicn Coordinate Transform1

Pasition

Visuslization Initialize

Vizuslization-1
pos J={ O Visuslzation '—b Paosition
Ceoordinate Transform
rot
Visualization Set Variables

. (Visualization-1)

o

00a] P Tazk Foroce

Constant

bbb

Omni

Figure 10.8: Visualization variables configured

10. Set the Simulation mode to External.

11. Build and run this model. Move the end-effector around. You should observe the avatar following the position
of the end-effector.

10.2.2 Modeling Forces

The gravity well is modeled as a piecewise continuous function. If the position of the avatar is within the radius of
influence, the avatar is attracted towards the point with a spring-damper force. Otherwise, the force is set to zero.

Recall that we set the diameter of the gravity well to 0.06 m in the visualization. Therefore, the radius of influence
will be 0.03 m. As soon as the avatar comes into contact with the gravity well, it should be pulled in towards the
center.

1. The gravity well force can be modeled as follows:

(a) Let E = pueir — Pavatar Where E is the Error, p,.;; is the well position, and p,,q:qr is the avatar position.
(b) If the magnitude of the error, F, is less than the radius of influence set:

F=FkKFE —bv,

otherwise set F' = 0 where v is the velocity, & is the spring stiffness, b is the damping, and F is the force.
The velocity, v, is calculated by differentiating the error. Remember to use a Second-Order Low-Pass
Filter block to differentiate the signal.

(c) Recall that we placed the well at[0.15 0 0] m. These are the coordinates for the well position, p.,.;;- Avatar
position, p..atar iS the position of the end-effector taken from the output pos of the OMNI block.

(d) Use k=100 N/m and b = 0.01 Ns/m
2. Create a Simulink subsystem to implement Steps 1a through 1d above. This model should have the following
inputs and outputs:

* Inputs

— well pos: Position of the well measured in meters
— avatar pos: Position of the avatar measured in meters

* Outputs

S

QUANSER



— force: Force of the well measured in Newtons

3. Attach a scope to the output force. Your model should resemble Figure 10.9.
Note: Do not connect the gravity Well model to the OMNI block yet.

——
Visualization Initialize

Visualization-1

‘Well Position Coordinate Transform

Pasiticn

pos. | Ornuni Visuslization '—.Pssitian
Coordinate Transform
Visualization Set Variables
(Visualization-1)
From1 foroe 4>|§| Task Force Gotol
wall Position a
Scope
From
Gravity Well
4 o5, of

Cmni

Figure 10.9: Gravity well model

N

. Set the Simulation mode to External in the Simulink toolbar.

&)

. Build and run the model.

e

. Open the scope and check if the forces make sense. Outside the gravity well, the forces should be zero.
Inside, they should be in the direction towards the center of the gravity well. The magnitude of the forces in
each of x, y and z directions should not exceed 3 N.

7. Once you have verified that the model is behaving correctly. Connect the output force to the Task Force input
of the OMNI block.

8. Build and run the model. Now you should be able to feel the forces applied by the gravity well.

Question 10.1

You may notice that for the model to recognize that the avatar is touching the gravity well, it looks
for the intersection of the center of the avatar and the outline of the gravity well. This is why the
avatar enters the gravity well half way before you begin to feel the attractive force. How would you
change the model in order to pull the avatar in towards the center as soon as the outline of the avatar
touches the gravity well?

Answer 10.1
If the magnitude of the Error is less than the radius of influence combined with the radius of the
avatar, set F' = k E — bv, otherwise set F' = 0.

ooo

9. Implement the updated error calculation.

10.2.3 Laboratory Files to Submit
The following files should be submitted for evaluation:

» GravityWell.xml
* Haptic_Gravity_Well.mdlI




10.3 Bonus

To complete the Bonus section, you will be provided with Teach_Points_Full.mdl. This model is similar to Teach-
Points.mdl used previously, except it outputs the position of the end-effector based on all six joints and not just the
first three. Since the stylus is no longer fastened to link 2, the tool position is no longer constant. Tool offset varies
as a function of joints 4 and 5. This model performs a full forward kinematic analysis that includes all 6 joints.

The bonus task is to use this file to click points in space where the gravity wells should be created. You are given a
MATLAB script to automatically generate the virtual environment for you based on the number of gravity wells you
create. Your challenge is to create a MATLAB Function block to model the gravity wells.

1. Open Teach_Points_Full.mdl.

2. Build and run the model. While the model is running, click at least 3 points in space to record their positions.
Stop the model once you are finished.

3. Open MakeGraphics.m. This file looks at how many points you clicked and modifies the Gravity_Wells_Bonus.xml
file to add the additional gravity wells to the scene.

4. Run the script.

5. Create a MATLAB Function block to model the forces from all the gravity wells. The function should be designed
as follows:

* Inputs
— wellPos: An nx3 vector that accepts the position of each well in meters. n is the number of wells
created by Teach_Points.mdl.
— avatarPos: Position of the avatar measured in meters
— vel: Velocity of the end-effector (for use calculating F' = kx + bv) measured in m/s.
* Outputs
— force: Force of the gravity wells measured in Newtons
+ Write the function to handle unknown number of gravity wells. You can do this by checking how many

gravity wells there are and then calculating the forces from all of those gravity wells. At the end, you can
simply add all of those forces to obtain the net force on the avatar.

The radius of each gravity well will be 0.03 m.
Use k& =100 N/m and b = 0.01 Ns/m

6. Add a Visualization Initialize block and Visualization Set Variable block and configure the visualization to
use the Gravity_Wells_Bonus.xml scene file. Your model should resemble Figure 10.10.

-—
Visualization Initialize
Visualzation-1

Coordinate Transform

pos Ll rot

Visuslization Set Variables

. (Visualization-1)

Constant

pes > T » 4 force | Tack Force
GravityWell

¥ vl ‘
8 Seoond-Order
Low-Fass Filter q4, g5, qf
yd Embedded

MATLAB Functicn

Cmni
Second-Order

Low-Fass Filter

Figure 10.10: Multiple gravity well model

7. Save your model as Bonus_Haptic_Gravity_Well.mdl.

Q

QUANSER




10.3.1 Laboratory Files to Submit

The following files should be submitted for evaluation:

» Bonus_Haptic_Gravity_Well.mdl

OMNIBUNDLE Workbook - Student Version



11 HAPTIC WALL

The objective of this laboratory is to create virtual wall contacts. When the avatar comes in contact with the wall,
repulsive forces are applied to push the avatar away from the wall. The force applied by the wall is a spring-damper
force given by F' = kx — bv, where k is the stiffness of the spring used to push the avatar, « is the vector from the
avatar to the wall, b is the damping coefficient and v is the avatar velocity. In this way, when the avatar is outside the
wall, the force is zero and as soon as it begins to penetrate the wall, it is pushed outwards by the force given above.

Topics Covered

+ Creating a Simulink model to implement a virtual wall parallel to the x-y plane.

S

QUANSER



171.1 In-Laboratory Experiment

171.1.1 Modeling Forces

Recall the global coordinate frame of the Omni, shown in Figure 11.1.

z

X

Figure 11.1: Omni coordinate frame

To model a wall parallel to the x-y plane, we require only the value of the z-coordinate of the wall. Figure 11.2 shows
the cross-section of the wall from the front.

WV

!

S S S S S S S SS

Figure 11.2: Cross-section of the wall

1. The wall force can be modeled as follows:
(@) E = zwall — Zend, Where E is the error, z,,;; is the z position of the wall, and z.,,4 is the z position of
end-effector.
(b) If the error is greater than zero, set:
F =kE — b,

otherwise set F' = 0, where v is the velocity, k is the spring stiffness, b is the damping, and F is the force.

The velocity, v, is calculated by differentiating the error. Remember to use a Second-Order Low-Pass
Filter block to differentiate the signal.

(c) Locate the wall at z,,,;; = -0.05 m.
(d) Use k£ =300 N/m and b =0.01 Ns/m




2. Open Haptic_Wall.mdl and note the full kinematic block OMNI. This model contains an OMNI block that is
similar to the block you built in Section 9.1.

3. Create a Simulink subsystem to implement Steps 1a through 1d above. This model should have the following
inputs and outputs:
* Inputs

— pos: Position of the end-effector in meters
— wall pos: Position of the wall measured in meters

* Outputs
— force: Force of the wall measured in Newtons

This model is shown in Figure 11.3.

Second-Order

=
Low-Pass Filter

yd

Second-Order
Low-Paszs Filter

Constant

o -
wall pos - !
o Subtract Switch1
o
Fes ./. E—

Constant1

Figure 11.3: Wall force model subsystem

4. Attach a scope to the output force. Your model should resemble Figure 11.4.
Note: Do not connect the haptic wall model to the OMNI block yet.

Goto

0.05 e wsll pos Bo

—_\ Constant
[pos] pos
—’f Scope Constant1

Haptic wall i AT om

foroe

|:| 0 0 0) P Task Force

¥

h

Figure 11.4: Haptic wall model

5. Set the Simulation mode to External in the Simulink toolbar.
6. Build and run the model.

7. Move the end-effector of the Omni up above z.,,; = 0.05 m to exit the wall and bring it down below z.,,; = -0.05
m to penetrate the wall. Open the scope and check if the forces make sense. The x and y forces should always
be zero. Away from the wall, the z force should be zero. As you begin to penetrate the wall, the force should
be applied in the positive z direction. Even at maximum penetration, the magnitude of this force should not
exceed 24 N.

@

QUANSER




8. Once you have verified that the model is behaving correctly. Connect the output force to the Task Force input
of the OMNI block.

9. Build the model.
Note: Before running your model, hold the end-effector of the Omni in a position above z.,, = -0.05
m. This is needed to ensure that when the model starts, there is no initial penetration of the wall.

10. Run the model. Now you should be able to feel the forces applied by the wall.

11.1.2 Laboratory Files to Submit

The following files should be submitted for evaluation:

» Haptic_Wall.mdl




11.2 Bonus

The bonus challenge is to implement a haptic puncture through wall. Push against the wall until a threshold force is
reached, at which point the wall breaks and the avatar is allowed to pass freely to the other side of the wall. Once
the avatar is on the other side of the wall, the wall restores itself to resist the avatar going back through and the
same scenario repeats.

Implement the wall contact force as a spring only. No damper is required.

You may implement the code to calculate the force in a MATLAB Function block.
Start with the model Bonus_Haptic_Pucture_Through_Wall.mdlI.

11.2.1 Requirements

» The wall has to be implemented in the x-y plane of the Omni coordinate frame.
* The wall should be located at z,,,; = 0 m and it must have thickness = 0.02 m.
* When the avatar is on either side of the wall, the force should be zero

* When the avatar is inside the wall or touching the wall, the force should be calculated using a spring model:
F = kx. Where £k is the spring stiffness and z is the vector from the avatar to the wall.

» The force should always be a repelling force. So if the avatar approaches the wall from the top direction, the
force should be in the positive z-direction and if the avatar approaches the wall from the bottom direction, the
force should be in the negative z-direction.

» The wall should break to let the avatar pass through to the other side when the threshold force is reached.
Once the avatar is on the other side, the wall should become solid again.

« If the avatar pushes against the wall but retreats before the threshold force is reached, the wall should remain
solid and the avatar should remain on the same side of the wall it was before. If it loses contact with the wall,
the force should become zero.

* Use &k =100 N/m, with a threshold force of 3 N

11.2.2 Hints

 Create a variable called touching that keeps track of weather the avatar is touching the wall or not. fouching =
1 if the wall is being touched, touching = 0, if the avatar is not in contact with the wall.

Think of the wall as having elastic properties. It may be possible for the avatar to stretch the wall such that its
position is on the other side of the wall without the wall breaking. For instance, if the avatar approaches the
wall from the top and begins to push against it, the threshold force will not be reached until the avatar is 0.01
m below the wall (the thickness of the wall is 0.02 m. therefore F' = 100(0.02 + 0.01) = 3 N (threshold force)

+ Calculate the force based on whether or not the avatar is touching the wall, which side of the wall it is on, and
weather the wall is broken or not.

+ Create a variable called dir that keeps track of which side of the wall the avatar is on. dir = 1 if the avatar is on
the top side, dir = -1 if avatar is on the bottom. Keep in mind that the side that the avatar is on changes only
when the wall is broken.

» Create a variable called broken that keeps track of weather the wall is currently broken or not. broken = 1
when the wall is broken, and 0 otherwise. By default, broken should equal 0. broken should have value 1 only
during the length of time in which the threshold force is reached and the avatar comes out on the other side
of the wall. In other words, if the threshold value is reached, broken should equal 1 and it should remain 1
until the position of the avatar is strictly on one side of the wall. If the wall breaks and the avatar sits inside the
broken wall, the status of the wall should remain broken.

Q

QUANSER




+ If you need to know the value of a signal in the previous sample time, use the Unit Delay blocks as shown in
Figure 11.5. Inside this block, set the Initial condition to be the value(s) that you want the signal to have initially.

1711.2.3 Model

Your model may resemble Figure 11.5, but keep in mind this model only shows one solution to implement this
behavior. There may be other solutions.

\o

Unit Delay1
. _— - pos e [pos
Visualization Initialize '1_ |,
Visualzation-1 z [ CGoto
F e
oroe_prew . P 1 4
a Coordinate Transform
Visualization Set Variables
e ir - ..a {Wisualization-1)
100 stiffness
Stiffness 4\ a4, g5, g8
h{
broken —— Omni
Break Force
J{dir_prav
touching
Je{prev_broksn

Calculate Force

Unit Delay2
1
— |

ad
z

1

Zz
Unit Delay2

"
e

Figure 11.5: Example model to implement haptic wall puncture

11.2.4 Laboratory Files to Submit

The following files should be submitted for evaluation:

» Bonus_Haptic_Puncture_Through_Wall.mdI




12 HAPTIC PONG

The objective of this laboratory is to create a haptic game of Pong. You will be given a partial model of the game
that implements the game in 1D. Your task will be to modify the model to make it a 2D game. Pong consists of 3
objects: a ball, a paddle, and 3 walls. The position of the paddle is controlled by the position of the end-effector of
the Omni. The purpose of the game is to hit the ball to bounce it off of the walls. The game is over if the ball falls
below the paddle.

Topics Covered

» Modifying a 1D game of Pong to a 2D game.
* Learning how to model dynamic objects.

* Using the spring-damper model from earlier exercises to apply forces to the ball and the paddle.

S

QUANSER



12.1 Pre-Laboratory Assignments

12.1.1 Studying the Model

In this section, you will be given an overview of the existing model of the game. The game is implemented in 1D,
meaning the ball can travel in the vertical direction only. Contact forces from the top wall and the paddle are used
to model the physical interaction between the paddle and the ball.

1. Open Pong1D.mdl. Four major parts of Pong1D.mdl are highlighted in Figure 12.1, and outlined below:

vi
Ball pos P Poaiti
Visualization Set Variables1
|
[umepes > » posz ball pos
Fom2 ]
Ball 1
Constants
Paddie pos Poaiti
pos » > »< paddlePos
L b |
p Visualization Set Variables
-
Fro
Task Force Ve 3
N VE World
©0oo] .
Consant
SN T
Dimensions
om 2

Stop Simulation

Figure 12.1: 1D Pong model

(a) Section 1: Section 1 models the ball. It looks at the position of the ball relative to the top wall and the
paddle. If the ball is in contact with either of these objects, the blocks under this section calculate the
force on the ball and the paddle. A dynamic model of the ball is setup inside the Ball subsystem.

(b) Section 2: Section 2 contains the OMNI block to apply forces and read position of the end-effector.

(c) Section 3: The blocks under section 3 model the virtual environment. They define the parameters of the
simulation, and update the position of the paddle and ball in the virtual world. The model under the VE
World subsystem ensures that visually, the ball does not appear to penetrate the walls even though this is
the actual case. Depending on the stiffness of the walls, the ball does penetrate into the walls, however
the position of the ball is saturated to stay within the walls and above the paddle whenever the ball hits
these objects.

(d) Section 4: The blocks under section 4 ensure that the simulation stops when the ball falls 0.03 m below
the paddle.

2. Double click on the block labeled Ball to open the subsystem. The model is shown in Figure 12.2




0 P ball pos y
Ball posy §
o
paddlePos —a P{paddie posy  y_ball_is_within_y_paddie
o
:.- P paddle width
x postion of wall relative to x of paddle 1
o
[ P»iball radius ~ Foroe z on ball
- ball pos z ball pos z
Transfer Fen Integrator  Integrator1
PD Contact Top Wall
C——— wfpsaeses
paddle pos z
L | ball radius
Foroe z on ball
| ball pos z
v Convert to force on Paddle
P g P paddle height
PD Contact Paddle
2

Figure 12.2: Ball model

(a) Section 1: The blocks under section 1 look at the horizontal position of the ball with respect to the hori-
zontal position of the paddle. If the ball is within the paddle's reach, the output trigger is 1 else itis 0. This
output is used later to determine if the ball is touching the paddle. The output frigger states are shown in

® @
S —

(a) trigger =0 (b) trigger = 1

Figure 12.3: trigger states depending on the horizontal position of the paddle

(b) Section 2: The blocks under section 2 model the dynamics of the ball in the vertical direction only. The
dynamic equation of the ball is given by:

F, =mé (12.1)

Where F, is the sum of all forces acting on the ball in the vertical direction, m is the mass of the ball and
Z is the acceleration of the ball in the vertical direction.

F, consists of the following forces:

F, = szaddle

- F

Ztopwall

—mg (12.2)

QUANSER

OMNI BUNDLE Workbook - Student Version v1.0



F.,.... 18 the force applied on the ball when it hits the paddle. This contact force is calculated using a
spring-damper model inside the PD Contact Paddle block. The negative of this force is the force applied
on the paddle. Hence the output of this block is negated and the output FzOmni is applied to the Omni.

F.,., ... 18 the force applied on the ball when it hits the top wall. This contact force is calculated using a

spring-damper model inside the PD Contact Top Wall block.
The position of the ball in the vertical direction is calculated by integrating Equation 12.1 twice:

Z://% (12.3)

3. Double click on PD Contact Top Wall subsystem to look underneath it. The model is shown in Figure 12.4

| in Feall
top wall Calculate Force >

2 > <) w1
ball radius — Force z on ball

Switch
(2 s
a

ball pos z

non contact Force

Figure 12.4: PD Contact Top Wall model

This model determines if there is a contact between the ball and top wall. The contact is determined by looking
at the vertical position of the ball only. If the vertical position of the ball is greater than or equal to the vertical
position of the top wall, there is contact. Once contact has been established, the force is calculated using a
spring-damper model otherwise the force is set to zero.

4. Double click on PD Contact Paddle subsystem to look underneath it. The model is shown in Figure 12.5

paddle pos z = In Fhall
-
ball radius Wl oo o Calculate Force -
- =1 anD A e D
GoO—» » B
Compare - — Force z on ball
ball pos z To Constant Legics! Switch
n - Operator
paddle height nen contact Force
From

touchingPaddle

Gote

Figure 12.5: PD Contact Paddle model

The logic to determine if there is a contact between the paddle and the ball is more complex than the top wall
model because the width of the paddle does not span from the left wall to the right wall. The horizontal and the
vertical position of the ball relative to the paddle must be determined. The relative horizontal position can be
found using the output trigger discussed earlier. If trigger is 1 and the vertical position of the ball is less than
or equal to the vertical position of the paddle, there is contact. The output touchingPaddle is 1 when the ball is
in contact with the paddle and 0 otherwise. Once contact has been established, the force is calculated using
a spring-damper model, otherwise the force is set to zero.




12.2 In-Laboratory Experiment

12.2.1 1D Model

B

11.

12.

© © © N o o

. Open Pong1D.mdl. This is a model of Pong in one dimension.

Before you can run this model, you have to run a MATLAB script to setup some of the variables used by the
game. From the directory where the laboratory files are saved, open SetupPong.m. In this script you will
notice that the mass of the ball is set to 0.1 Kg and the stiffness and damping of the walls is set to 500 N/m
and 0.5 Ns/m respectively.

Run the setup script to load the variables onto the workspace.

Notice that there is a Manual Switch in front of the Omni block which feeds into the Task Force input. Check
that the Switch is in the downward position to feed a constant 0 N force to the Omni.

Ensure that the Simulation mode is set to External.

Build Pong1D.mdl. Before running this model, hold the end-effector of the Omni in your hand.

Run the model and switch to the 3D Viewer.

Stop the model and observe the behaviour of the paddle and ball.

Enable the haptics by switching the Manual Switch to route the signal from the force calculation blocks.

Re-run the model. There should be able to feel a force downwards every time the ball hits the paddle. You
may also notice that it is a lot easier to keep the ball on the paddle with a minimal number of bounces while
the haptics are turned on. This is because humans are better able to control most systems using both sight
(visual feedback) and feel (proprioceptive feedback) rather than visual feedback alone.

Turn off haptics and try to hold the ball on the paddle with a minimum number of bounces using visual feedback
alone. Achieving the same damping should be a lot more difficult.

Play with the game to get comfortable using the paddle.

12.2.2 Extending to 2D Maodel

In this section you will extend the model so that the game is implemented in 2D. In this configuration you should be
able to hit the ball left/right to bounce it off of the side walls as well. Three additional contact models will have to be
created: contact with left wall, contact with right wall and contact with the paddle to generate forces in the horizontal
direction.

1.
2.

S

Open and save Pong1D.mdl as Pong2D.mdI.
First, you need to setup a dynamic model of the ball in the horizontal direction.

Question 12.1
Identify the dynamic equation of the ball in the horizontal direction. Your solution should include
equations resembling Equation 12.1, Equation 12.2, and Equation 12.3.

Answer 12.1

F, =mjy

F’U - Fy,uuuuu + Fl/[(/l,wull + Fyr»m/xz,wu

QUANSER



/]
Y= —
Y JJ m

oo
. Create a model to implement the dynamic system. Create this model in the subsystem shown in Figure 12.2.

. Study the PD Contact Top Wall model. Use this model as a reference to create a subsystem block called PD
Contact Right Wall. These two blocks should be very similar to each other, the only difference being that one
is implemented in the vertical direction and the other in the horizontal.

The position of the right wall is given by the first element of the signal wallPos.

For stiffness, use the variable stiffness and for damping, use damping. These variables have already been
setup in the SetupPong.m script.

. Similarly, create a block to implement contact with the left wall. Call this block PD Contact Left Wall.

The position of the left wall is given by the negative of the first element of the signal wallPos.

For stiffness and damping, use the same stiffness and damping variables stated previously.

. Create a susbsystem called D Contact Paddle. The lateral contact with the paddle requires a relative change

in the position of the paddle with respect to the ball. This contact will be established using a damper model
only. The logic for this contact model should be implemented as follows:
If touchingPaddle > 0

F = lateral_damping * v
else

F=0
end
where lateral_damping is the damping coefficient and v is the velocity. The velocity is calculated by differenti-
ating the signal paddle pos y - ball pos y. See Step 4 in Section 12.1.1 for a more detailed outline of the signal
touchingPaddle.

Modify SetupPong.m to include the variable lateral _damping with a magnitude 2 Ns/m.

The negative of the lateral contact force is the force on the paddle. Negate this force and use a Goto block
called FyOmni to feed this force to the Omni.

. Sum the lateral and vertical forces, and feed this force to the dynamic model.

. Change the input ball pos y of the y position of wall relative to y of paddle block to the output of your dynamic
model. Your model should resemble Figure 12.6.




5

I - -
:

[FellRadivs > p{balrsdivs Force y on b

) ball pos y

PD Contact Right Wall

-
:

Gsin b4
[l plosivss Fare yon ua\\4p+4>®
A ball posy

Traneter Forl Integrater2 Integrator3

all pos

FD Cantact Left Wall

I (P,

]
paddleFos —a paddie posy y_hs\l_\s_.«'\thr_v)a::la
o

ezl pos y
Foroey on ol e ] 0
| addie width
paddle pos y Convert to force on paddle
paddle pos y
D Contact Faddle x pastion of wall relative to x of paddle

| ERILERTS o {bail radivs  Force y on bal

bl pos v ball posz

TransterFon  Integrator  Integratort

PD Contact Top Wall

paddle posz

Gravity

BallRediss
Foroe y on bal

all pos y

Convert to force on Paddle

addle height

Y

FD Contact Paddle

Figure 12.6: 2D Pong ball model

9. The parent model should now resemble Figure 12.7.

Tﬁ [ o f—— »

Ball pos | Pt

x position of ball
Visuslizetion Initialize

Visuslization-

ol asie pos I Visuslization Set Varisbles
Wjpaddleposy  ballposy (Visualzation-1)

o

[paddi=Fos "

e

Wipaddleposz  ballposz
Ball
Constant
pas | -;I »- paddieFos

Visuslizstion Set Variables
(Visualzation-1)

bhons ]

Task Foroe
-[n 00 »o VE World
Constant
2. 93 E ?
4,95, 95
Dimensions
omni
stop
Stop Simulstion
Stop oriteria

Figure 12.7: Complete 2D Pong model

12.2.3 Testing the Model

1. Make sure that the switch in front of the Omni block is routed to the constant [0 0 0]. It is important to run the
model without haptics first in order to ensure that the model is working properly. In case of an error, sending
large forces to the Omni could damage the device.

2. Build and run the model. You should now be able to hit the ball sideways to bounce it off of the side walls. Play

Q

QUANSER




with the game to make sure that the ball behaves as expected.

3. Once you are satisfied with the behavior of the ball, turn on the haptics. Now you should be able to feel the
force of the ball in both horizontal and vertical directions as it strikes the paddle.

12.2.4 Laboratory Files to Submit
The following files should be submitted for evaluation:

* Pong2D.mdl

OMNI BUNDLE Workbook - Student Version



APPENDIX A

DENAVIT-HARTENBERG
CONVENTION

A.

1 Introduction

Although it is possible to carry out forward kinematics analysis analytically from geometry, this approach becomes
tedious for multi-link robots with many joints. It is useful to use a standard technique to derive the forward kinematics
of a robot. The Denavit-Hartenberg convention (D-H convention) is the technique used in this curriculum to perform
the forward kinematics analysis of the Omni.

A.2 Labeling

1.
2.

3.

For a serial robot with n joints, label all joints from joint 1 to joint n. Label joint i with variable ¢;.

Label all links from link O to link n. Link 0 is the link between the base of the robot and joint 1. In some cases,
if joint 1 is located at the base, then link 0 is taken to have length zero. If two joints are located on top of each
other, then the link between those joints is also taken to have length 0.

Attach a coordinate frame (frame 0 to frame n) rigidly to the end of each link. Due to some links that have 0
lengths, the origin of some frames may coincide. In this way, when joint i moves, the coordinate frame i also
moves in the same way. Frame 0 is the base frame, attach it to the base. This will be taken as the global frame
since it does not move with any joint.

A.2.1 How to Orient the Frames?

o g~ 0N

Q

. Draw the robot such that all joint variables are zero.

Label all joints and links.

Label all joint axis. Joint i has joint axis z;. The direction of z; axis is the direction of positive motion of joint i.
Label the base origin og anywhere on the z; axis.

Choose z( and yg conveniently to complete the base frame according to the right-hand-rule.

Next setup the rest of the frames as follows:

Find the line perpendicular to both z;_; and z;. Label this line axis x;. Label o; at the intersection of x; and z;.
Choose y; to form a right-hand frame.

Special Cases:
(a) If z;_1 and z; are parallel. Choose o; to be located at joint i+1. Choose x; to be the line that passes
through o; and that is normal from z;_; to z;. Choose y; to form a right-hand frame.

(b) If z;,_1 and z; intersect: Choose x; to be perpendicular to both z;,_; and z;. Place o; at the intersection of
»i—1 and z;. Choose y; to form a right-hand frame.

. Setup the end-effector frame, o,, (x,, y» 2,). Make z, in the same direction as z,,_;. Make o,, the center of the

end-effector or anywhere on the end-effector as desired. Set z,, and y,, to form a right hand frame.

QUANSER



A.2.2 Terminology

Term Variable Description
Homogeneous Transforms a point in frame ¢ coordinates to frame i — 1
matrix A; coordinates. Each homogeneous matrix has the form:
Ry di_y
0 1

where R!_, is the rotation matrix from frame i to frame

i—1and di_, is the distance from frame i to frame i — 1.
Transformation _ Transforms a point in frame j coordinates to frame
matrix T’ coordinates. Frame j and i are not consecutive.

A transformation matrix can be obtained from a set of
homogeneous matrices:

T/ = Ajy1 Aiyo Aj 1 Aj (A.1)
Each transformation matrix has the form:

R &
o]

where R/ is the rotation matrix from frame j to frame i
and &/ is the distance from frame j to frame i.

Table A.1: Terminology

A.3 D-H Convention

The D-H convention provides a systematic way of arriving at the homogeneous matrix, 4;. Once the frames have
been setup, the parameters shown in will help derive the D-H parameters.

Parameter | Description

0; Angle: The angle between z;_; and z;, measured about z;_;.

d; Offset: The distance from o;_; to the intersection of z; and z;_;, measured along z; ;.
a; Length: The distance from the intersection of x; and z;_; to o;, measured along z;.

o Twist: The angle between z;_, and z;, measured about z;.

Table A.2: D-H Parameters

From these parameters, the homogeneous matrix can be calculated as follows:

Q
)
»
—~
)
o~
N2
O = O O

A; = Rot, g, Trans, q, Transg o, Rots o,

—_ o O O

oo o

o O = O

0 0[ (1 0 0 af (1 0 0 0
0 0110 1 0 Of [0 cos(oy) —sin(a;) O
1 di| [0 0 1 0] |0 sin(eyy) cos(e;) O
0 1 0 0 0 1f]0 0 0 1

(A.2)

Once all the A; matrices are known, Equation A.1 can be used to derive the transformation matrix between any two

frames.




A.4 Example: A planar Elbow

The planar elbow shown in Figure A.1 is a two link manipulator with two revolute joints. Steps 1 to 7 of Section A.2.1
have already been performed.

Yo Y1 Y2

2o 23 22

Figure A.1: Two-link planar elbow

The D-H parameters of this manipulator, derived using the definitions in Table A.2 are shown in Table A.3.

Link 0; | d; a; (s 7]
1 q1 0 L1 0
2 q2 0 L2 O

Table A.3: D-H Parameters for planar elbow

Substituting these values into Equation A.2 will result in two homogeneous matrices A; and A,. Then 7§ can be
calculated by using:

T = Ay Ay

where T¢ is the transformation matrix needed to transform any point in frame 2 coordinates to the global frame
(frame 0). Therefore, T3 will have the form:

T?:{

7

R§ dj
0 1

Pz,
Assume a point p; = [pyz} is given in frame 2 coordinates. To transform this point from frame 2 to the frame 0

Dz,
coordinates:

Po = R%m + dg

S

QUANSER



Expand your research with open architecture robotics platforms

» Open Architecture Robots

1

MATLAR
SIMULINK

KUKA Robot KUKA C2sr Controller QUARC Control Design Software Pre-Configured PC
Robot and controller sold separately through KUKA.

MATLAR
SIMULINK

VP-6 Denso Robot Denso Controller QUARC Control Design Software Pre-Configured PC

» 6 DOF Telepresence System » 5 DOF Haptic Wand  » HD2 High Definition Haptic Device

HAPTICS

More than 20 years of experience in the field of mechatronics and controls enables Quanser to design and implement
innovative platforms for research in Robotics and Haptics. Quanser technology allows advanced research and teaching in
robotics by delivering an open architecture platform based on popular industrial and commercial robots. These open
architecture systems can be customized for research in such areas as robot-assisted surgery, force feedback teleoperation,
space and undersea expeditions and human rehabilitation systems.

To discuss your robotics research needs, please email info@quanser.com

©2012 Quanser Inc. All rights reserved. MATLAB® and Simulink® are registered trademarks of The MathWorks Inc.

QUANSER

INFO@QUANSER.COM +1-905-940-3575 QUANSER.COM

Solutions for teaching and research. Made in Canada.




	1 Introduction
	1.1 Omni
	1.1.1 Joints
	1.1.2 Custom Configuration
	1.1.3 Physical Properties
	1.1.4 Positions


	2 Preface
	3 Forward Kinematics
	3.1 Pre-Laboratory Assignments
	3.1.1 Standard D-H Parameters
	3.1.2 MATLAB Functions
	3.1.3 Laboratory Files to Submit

	3.2 In-Laboratory Experiment
	3.2.1 Reading Joint Angles
	3.2.2 Implementing Forward Kinematics
	3.2.3 Determining the Reachable Space of the Omni
	3.2.4 Laboratory Files to Submit


	4 Inverse Kinematics
	4.1 Pre-Laboratory Assignments
	4.1.1 Inverse Kinematics Equations
	4.1.2 MATLAB Function Block
	4.1.3 Laboratory Files to Submit

	4.2 In-Laboratory Experiment
	4.2.1 Implementing Inverse Kinematics


	5 Position Control
	5.1 Pre-Laboratory Assignments
	5.1.1 PD Control: Transfer Function
	5.1.2 Effect of PD Gains
	5.1.3 Design for Specifications
	5.1.4 Laboratory Files to Submit

	5.2 In-Laboratory Experiment
	5.2.1 Joint 1 Control and Effects of Kp
	5.2.2 Joint 1 Velocity
	5.2.3 Joint 3 Control and Effects of Ki
	5.2.4 Joint 3 PID Control
	5.2.5 Joint 3 Velocity
	5.2.6 Joint 2 Control and Effects of Gravitational Loading
	5.2.7 Joint 2 PID Control
	5.2.8 Joint 2 Velocity
	5.2.9 Laboratory Files to Submit


	6 Teach Pendant in Joint Space
	6.1 Pre-Laboratory Assignments
	6.1.1 Laboratory Files to Submit

	6.2 In-Laboratory Experiment
	6.2.1 Teaching Points
	6.2.2 Creating Trajectories
	6.2.3 Controlling the Robot
	6.2.4 Laboratory Files to Submit


	7 Teach Pendant in Task Space
	7.1 Pre-Laboratory Assignments
	7.1.1 Laboratory Files to Submit

	7.2 In-Laboratory Experiment
	7.2.1 Teaching Points
	7.2.2 Creating Trajectories
	7.2.3 Controlling the Robot
	7.2.4 Laboratory Files to Submit


	8 Jacobian
	8.1 Pre-Lab Assignments
	8.1.1 Derivation of the Jacobian
	8.1.2 Laboratory Files to Submit

	8.2 In-Laboratory Experiment
	8.2.1 Linear and Angular Velocity of the End-effector
	8.2.2 Laboratory Files to Submit


	9 Force Rendering
	9.1 In-Laboratory Experiment
	9.1.1 Applying Forces in Task Space
	9.1.2 Laboratory Files to Submit


	10 Haptic Gravity Well
	10.1 Pre-Laboratory Assignments
	10.1.1 The Virtual Environment
	10.1.2 Laboratory Files to Submit

	10.2 In-Laboratory Experiment
	10.2.1 Interfacing with the QUARC Visualization
	10.2.2 Modeling Forces
	10.2.3 Laboratory Files to Submit

	10.3 Bonus
	10.3.1 Laboratory Files to Submit


	11 Haptic Wall
	11.1 In-Laboratory Experiment
	11.1.1 Modeling Forces
	11.1.2 Laboratory Files to Submit

	11.2 Bonus
	11.2.1 Requirements
	11.2.2 Hints
	11.2.3 Model
	11.2.4 Laboratory Files to Submit


	12 Haptic Pong
	12.1 Pre-Laboratory Assignments
	12.1.1 Studying the Model

	12.2 In-Laboratory Experiment
	12.2.1 1D Model
	12.2.2 Extending to 2D Model
	12.2.3 Testing the Model
	12.2.4 Laboratory Files to Submit


	A Denavit-Hartenberg Convention
	A.1 Introduction
	A.2 Labeling
	A.2.1 How to Orient the Frames?
	A.2.2 Terminology

	A.3 D-H Convention
	A.4 Example: A planar Elbow


